Abstract

In this paper we present four-wave mixing (FWM) based parametric conversion experiments in p-i-n diode assisted silicon-on-insulator (SOI) nano-rib waveguides using continuous-wave (CW) light around 1550 nm wavelength. Using a reverse biased p-i-n waveguide diode we observe an increase of the wavelength conversion efficiency of more than 4.5 dB compared to low loss nano-rib waveguides without p-i-n junction, achieving a peak efficiency of −1 dB. Conversion efficiency improves also by more than 7 dB compared to previously reported experiments deploying 1.5 µm SOI waveguides with p-i-n structure. To the best of our knowledge, the observed peak conversion efficiency of −1dB is the highest CW efficiency in SOI reported so far.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009).
  2. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  3. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
    [CrossRef] [PubMed]
  4. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  5. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
    [CrossRef] [PubMed]
  6. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express16(21), 16735–16745 (2008).
    [CrossRef] [PubMed]
  7. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
    [CrossRef]
  8. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express18(3), 1904–1908 (2010).
    [CrossRef] [PubMed]
  9. N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
    [CrossRef]
  10. S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).
  11. J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookherjea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides,” Opt. Lett.36(15), 2964–2966 (2011).
    [CrossRef] [PubMed]
  12. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11(15), 1731–1739 (2003).
    [CrossRef] [PubMed]
  13. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express12(23), 5703–5710 (2004).
    [CrossRef] [PubMed]
  14. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  15. H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
    [CrossRef]
  16. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  17. J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
    [CrossRef]
  18. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
    [CrossRef] [PubMed]
  19. A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011).
    [CrossRef] [PubMed]
  20. H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).
  21. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]
  22. S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” Group IV Photonics proceedings 2010.

2011

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011).
[CrossRef] [PubMed]

J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookherjea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides,” Opt. Lett.36(15), 2964–2966 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

2010

2009

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009).

2008

2007

2006

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

2005

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

2004

2003

Absil, P.

Agrawal, G. P.

Alic, N.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

Assefa, S.

Baets, R.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Bergman, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

Biaggio, I.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Biberman, A.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

Bogaerts, W.

Brinkmeyer, E.

Brosi, J. M.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Bruns, J.

Chan, J.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

Chavez Boggio, J.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

Chen, X.

Claps, R.

Cohen, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Cooper, M. L.

Dadap, J. I.

Diederich, F.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Dimitropoulos, D.

Dulkeith, E.

Dumon, P.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Foster, A. C.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

Foster, M. A.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Frank, B.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Freude, W.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Gaeta, A. L.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gajda, A.

A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011).
[CrossRef] [PubMed]

H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).

Gholami, F.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

Green, W. M.

Green, W. M. J.

Gupta, G.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Han, Y.

Hsieh, I.-W.

Jalali, B.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Koos, C.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Krause, M.

Kuo, Y.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Kuo, Y. H.

Kuyken, B.

Lepage, G.

Leuthold, J.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Levy, J. S.

Lin, Q.

Lipson, M.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, X.

Mathlouthi, W.

Mookherjea, S.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

J. R. Ong, M. L. Cooper, G. Gupta, W. M. J. Green, S. Assefa, F. Xia, and S. Mookherjea, “Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides,” Opt. Lett.36(15), 2964–2966 (2011).
[CrossRef] [PubMed]

Moro, S.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

Ong, J. R.

Ophir, N.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

Osgood, R. M.

Padmaraju, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

Painter, O. J.

Paniccia, M.

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express16(21), 16735–16745 (2008).
[CrossRef] [PubMed]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

Petermann, K.

A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011).
[CrossRef] [PubMed]

H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).

Poitras, C. B.

Raday, O.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Radic, S.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

Raghunathan, V.

Renner, H.

Roelkens, G.

Rong, H.

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express16(21), 16735–16745 (2008).
[CrossRef] [PubMed]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Salem, R.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Scimeca, M. L.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Selvaraja, S.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sih, V.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

Tian, H.

H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).

Tillack, B.

A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011).
[CrossRef] [PubMed]

H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).

Turner, A. C.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Vlasov, Y. A.

Winzer, G.

H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).

Xia, F.

Xu, S.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

Zimmermann, L.

A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011).
[CrossRef] [PubMed]

H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).

Zlatanovic, S.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

Adv. Opt. Photon.

IEEE J. Sel. Top. Quantum Electron.

S. Zlatanovic, J. S. Park, F. Gholami, J. Chavez Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron.PP, 1–9 (2011).

IEEE Photon. Technol. Lett.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

H. Tian, G. Winzer, A. Gajda, K. Petermann, B. Tillack, and L. Zimmermann, “Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications,” J. Eur. Opt. Soc. Rapid Publ. (to be published).

Nat. Photonics

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express11(15), 1731–1739 (2003).
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express12(23), 5703–5710 (2004).
[CrossRef] [PubMed]

Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express14(24), 11721–11726 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express16(21), 16735–16745 (2008).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Proc. IEEE

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009).
[CrossRef]

Other

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” Group IV Photonics proceedings 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Parametric conversion efficiency as presented by Ophir et al. [9]

Fig. 2
Fig. 2

(a) Typical simulated spectrum at the input and at the output of the waveguide (L = 4cm). In our experiment, the idler is only present at the output. (b) Conversion efficiency plotted vs. waveguide length for a set of pump powers.

Fig. 3
Fig. 3

SEM cross-section of rib-waveguide as used for the nonlinear experiments in this paper. The waveguide height was H = 220nm, slab height s = 50nm, the rib width w = 500nm.

Fig. 4
Fig. 4

Scheme of the measurement setup to characterize four-wave mixing in the waveguides.

Fig. 5
Fig. 5

Parametric conversion efficiency vs. pump power for two nano-waveguides (1 cm and 4 cm). The waveguides were fabricated without p-i-n, and show clear saturation behavior.

Fig. 6
Fig. 6

(a) Degenerate FWM spectrum, as observed after 4 cm nano-waveguide with a p-i-n diode. The power was attenuated to record the spectrum. (b) Conversion efficiency vs. in-coupled power, for a set of reverse bias voltages up to −20V.

Fig. 7
Fig. 7

Conversion efficiency vs. detuning of signal-pump, for three different pump wavelengths. Pump power in the waveguide was 26 dBm.

Fig. 8
Fig. 8

Conversion efficiency comparing signal input with idler output as predicted from our simple model. Only nano-waveguides allow for net- conversion gain.

Tables (1)

Tables Icon

Table 1 Summary of CW Four-wave Mixing Results in Literature and This Work

Metrics