Abstract

We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
    [CrossRef] [PubMed]
  2. M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
    [CrossRef]
  3. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [CrossRef]
  4. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [CrossRef]
  5. Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
    [CrossRef]
  6. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
    [CrossRef]
  7. H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [CrossRef]
  8. X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
    [CrossRef]
  9. R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
    [CrossRef]
  10. S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
    [CrossRef]
  11. J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
    [CrossRef]
  12. S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
    [CrossRef]
  13. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008).
    [CrossRef]
  14. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
    [CrossRef]
  15. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29(24), 2858–2860 (2004).
    [CrossRef] [PubMed]
  16. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
    [CrossRef]
  17. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
    [CrossRef]
  18. F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108(5), 053108 (2010).
    [CrossRef]
  19. F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
    [CrossRef]
  20. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [CrossRef]
  21. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [CrossRef]
  22. E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).
  23. C. G. Choi, C. S. Kee, and H. Schift, “Fabrication of polymer photonic crystal slabs using nanoimprint lithography,” Curr. Appl Phys. 6s1, e8-e11 (2006).
  24. L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
    [CrossRef]
  25. L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
    [CrossRef] [PubMed]
  26. Y. Z. Liu, R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, “Γ-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs,” Opt. Express 16(26), 21483–21491 (2008).
    [CrossRef] [PubMed]
  27. http://ab-initio.mit.edu/wiki/index.php/Meep .
  28. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  29. T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
    [CrossRef]
  30. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26(23), 1903–1905 (2001).
    [CrossRef] [PubMed]
  31. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  32. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
    [CrossRef] [PubMed]
  33. Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
    [CrossRef]
  34. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
    [CrossRef]
  35. Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011).
    [CrossRef] [PubMed]

2011 (2)

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011).
[CrossRef] [PubMed]

2010 (3)

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108(5), 053108 (2010).
[CrossRef]

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

2009 (2)

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

2008 (6)

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008).
[CrossRef]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Y. Z. Liu, R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, “Γ-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs,” Opt. Express 16(26), 21483–21491 (2008).
[CrossRef] [PubMed]

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

2007 (5)

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[CrossRef] [PubMed]

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

2006 (5)

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[CrossRef]

C. G. Choi, C. S. Kee, and H. Schift, “Fabrication of polymer photonic crystal slabs using nanoimprint lithography,” Curr. Appl Phys. 6s1, e8-e11 (2006).

2005 (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

2004 (1)

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

1999 (1)

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[CrossRef]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

1994 (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Adibi, A.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Akahane, Y.

T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Alcubilla, R.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Anand, S.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Arakcheeva, E. M.

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Asano, T.

T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Askari, M.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Badenes, G.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Balet, L.

Balog, S.

Bastiaansen, C. W. M.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Biaggio, I.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Broer, D. J.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Busch, K.

S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29(24), 2858–2860 (2004).
[CrossRef] [PubMed]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Carlström, C. F.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Cheylan, S.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Choi, C. G.

C. G. Choi, C. S. Kee, and H. Schift, “Fabrication of polymer photonic crystal slabs using nanoimprint lithography,” Curr. Appl Phys. 6s1, e8-e11 (2006).

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Chow, E.

Cohen, O.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

de Sterke, C. M.

Diederich, F.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Ding, C. Y.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Dunbar, L. A.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Eggleton, B. J.

El-Kallassi, P.

Esembeson, B.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Feng, S.

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

Ferrini, R.

P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008).
[CrossRef]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Fiore, A.

Francardi, M.

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Gan, L.

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Gerardino, A.

Gong, Q. H.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Gösele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Gurevich, S. A.

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Hermann, D.

Hotchkiss, P. J.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Houdré, R.

P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008).
[CrossRef]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Hu, X. Y.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Jiang, P.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Joannopoulos, J. D.

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Johnson, S. G.

Jones, S. C.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Karouta, F.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[CrossRef]

Kee, C. S.

C. G. Choi, C. S. Kee, and H. Schift, “Fabrication of polymer photonic crystal slabs using nanoimprint lithography,” Curr. Appl Phys. 6s1, e8-e11 (2006).

Kjellander, B. K. C.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Kuo, Y. H.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Li, J. Y.

Li, L. H.

Li, Z. Q.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

Li, Z. Y.

Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011).
[CrossRef] [PubMed]

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108(5), 053108 (2010).
[CrossRef]

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Y. Z. Liu, R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, “Γ-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs,” Opt. Express 16(26), 21483–21491 (2008).
[CrossRef] [PubMed]

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

Lin, S. Y.

Lipson, R. H.

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[CrossRef]

Liu, R. J.

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

Y. Z. Liu, R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, “Γ-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs,” Opt. Express 16(26), 21483–21491 (2008).
[CrossRef] [PubMed]

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

Liu, Y.

Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011).
[CrossRef] [PubMed]

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108(5), 053108 (2010).
[CrossRef]

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Liu, Y. Z.

Maksimov, M. V.

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Mao, Q. H.

Marder, S. R.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Martz, J.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Maydykovskiy, A.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Meng, Q. B.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Meng, Z. M.

Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011).
[CrossRef] [PubMed]

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108(5), 053108 (2010).
[CrossRef]

Michinobu, T.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Mingaleev, S. F.

Mitsugi, S.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Momeni, B.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Mondia, J. P.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Mulot, M.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Murzina, T.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[CrossRef]

Nesterov, S. I.

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Noda, S.

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[CrossRef] [PubMed]

T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Norwood, R. A.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Nötzel, R.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Nüesch, F.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Ozaki, M.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[CrossRef]

Paniccia, M.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Peyghambarian, N.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Puigdollers, J.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Qin, F.

Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011).
[CrossRef] [PubMed]

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108(5), 053108 (2010).
[CrossRef]

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Raday, O.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Ren, C.

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Rong, H. S.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Salemink, H. W. M.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Schift, H.

C. G. Choi, C. S. Kee, and H. Schift, “Fabrication of polymer photonic crystal slabs using nanoimprint lithography,” Curr. Appl Phys. 6s1, e8-e11 (2006).

Schillinger, M.

Scimeca, M. L.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Seekamp, J.

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[CrossRef]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Sih, V.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Singh, M. R.

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[CrossRef]

Snijders, J. A. P.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Song, B. S.

T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Sotomayor Torres, C. M.

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Steel, M. J.

Sychev, F. Y.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Tanaka, Y.

Tanklevskaya, E. M.

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Tay, S.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Thomas, J.

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Tomljenovic-Hanic, S.

Trifonov, T.

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

van der Drift, E.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

van der Heijden, R.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

van der Heijden, R. W.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

van Driel, H. M.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Wang, C.

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Wei, Z. Y.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

Wild, B.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Xu, S. B.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Yang, H.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Yang, H. F.

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

Yoshino, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[CrossRef]

Zhang, D. Z.

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Y. Z. Liu, R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, “Γ-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs,” Opt. Express 16(26), 21483–21491 (2008).
[CrossRef] [PubMed]

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

Zhang, J. X.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

Zhang, X. P.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

Zhang, Z. B.

Zhou, C. Z.

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

Y. Z. Liu, R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, “Γ-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs,” Opt. Express 16(26), 21483–21491 (2008).
[CrossRef] [PubMed]

Zhou, F.

Zuppiroli, L.

P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008).
[CrossRef]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

Adv. Funct. Mater. (1)

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21(10), 1803–1809 (2011).
[CrossRef]

Adv. Mater. (1)

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, Adv. Mater. 20(23), 4584–4587 (2008).
[CrossRef]

Appl. Phys. Lett. (8)

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[CrossRef]

Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett. 93(24), 241107 (2008).
[CrossRef]

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanoparticle/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Asano, B. S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[CrossRef]

J. Appl. Phys. (2)

F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108(5), 053108 (2010).
[CrossRef]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006).
[CrossRef]

J. Opt. (1)

F. Qin, Y. Liu, and Z. Y. Li, “Optical switching in hybrid semiconductor nonlinear photonic crystal slabs with Kerr materials,” J. Opt. 12(3), 035209 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Nat. Photonics (2)

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

Phys. Rev. B (1)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

L. Gan, C. Z. Zhou, C. Wang, R. J. Liu, D. Z. Zhang, and Z. Y. Li, “Two-dimensional air-bridged silicon photonic crystal slab devices,” Phys. Status Solidi A 207(12), 2715–2725 (2010).
[CrossRef]

Proc. SPIE (1)

S. Cheylan, F. Y. Sychev, T. Murzina, T. Trifonov, A. Maydykovskiy, J. Puigdollers, R. Alcubilla, and G. Badenes, “Optical study of polymer infiltration into porous Si based structures,” Proc. SPIE 6593, 65931K, 65931K-11 (2007).
[CrossRef]

Solid-State Electron. (1)

E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. Sotomayor Torres, “Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography,” Solid-State Electron. 50, 1043–1047 (2005).

Other (2)

C. G. Choi, C. S. Kee, and H. Schift, “Fabrication of polymer photonic crystal slabs using nanoimprint lithography,” Curr. Appl Phys. 6s1, e8-e11 (2006).

http://ab-initio.mit.edu/wiki/index.php/Meep .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the fabricated compound structure (a) and the fabrication procedure (b). The fabricated compound structure is a multilayer structure, from top to down corresponding to polystyrene layer, silicon layer with photonic crystal hole array filled with polystyrene, the silicon dioxide layer and the silicon substrate.

Fig. 2
Fig. 2

SEM top view pictures of a triangular-lattice complete photonic crystal. Strip waveguides are visible at the left and right of the PC region. (a) Before infiltration; (b) After infiltration by utilizing NIL technique. The image contrast for the compound structure is low because of the poor conductivity of polystyrene covering the silicon membrane.

Fig. 3
Fig. 3

(a) and (b) are the cross-section SEM image of the compound photonic crystal structure. The dark grey color corresponds to the polystyrene while the light grey color corresponds to the silicon owing to the difference between their conductivity. We can see that polystyrene fills the holes ideally and conformally without shrinkage and delamination from the side walls. (c) The cross-section SEM image of the compound photonic crystal structure after the deposition of Pt layer. We deposit a layer of Pt by FIB induced deposition on the surface of the compound structure after taking out the surface polymer by the O2 Reactive-Ion-Etching, and we can see that Pt cannot deposit into the holes array, indicating complete infiltration of polystyrene into the air holes. (d) The cross-section SEM image of the non-infiltrated photonic crystal structure after the deposition of Pt layer. In contrast with panel (c), we can see that the Pt can deposit into the air holes and reach their bottom. The bright rectangular bump on top of the slab is the deposited Pt layer.

Fig. 4
Fig. 4

Transmission spectra of the TE-like mode along the Γ-K direction of the empty and infiltrated triangular-lattice PCs. (a) Experimental data, where both of the samples before and after infiltration are measured twice to clarify the validity of measurement data. The two lines with solid cubic symbol are the transmission curves before infiltration, and the two lines with hollow circle symbol are the transmission curves after infiltration; (b) 3D-FDTD simulation data.

Fig. 5
Fig. 5

(a) Top-view SEM images of PC microcavity before infiltration. Two PC W1 waveguide formed by removing a row of air holes are connected with the cavity region; (b) Top-view SEM images of PC microcavity after infiltration. The image contrast for the compound structure is low because of the poor conductivity of polystyrene covering the silicon membrane.

Fig. 6
Fig. 6

(a) Measured transmission spectrum of the compound PC microcavity, the black dot line is measurement data, the red line is fitting line with Lorentzian line-shape; (b) 3D-FDTD simulation data of transmission spectrum of the compound PC microcavity, the red line is fitting line with Lorentzian line-shape.

Metrics