Abstract

We study experimentally and theoretically band-pass filters based on guided-mode resonances in free-standing metal-dielectric structures with subwavelength gratings. A variety of filters are obtained: polarizing filters with 1D gratings, and unpolarized or selective filters with 2D gratings, which are shown to behave as two crossed-1D structures. In either case, a high transmission (up to ≈ 79 %) is demonstrated, which represents an eight-fold enhancement compared to the geometrical transmission of the grating. We also show that the angular sensitivity strongly depends on the rotation axis of the sample. This behavior is explained with a detailed description of the guided-mode transmission mechanism.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  2. R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  3. O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
    [CrossRef]
  4. M. L. Wu, C. L. Hsu, Y. C. Liu, C. M. Wang, and J. Y. Chang, “Silicon-based and suspended-membrane-type guided-mode resonance filters with a spectrum-modifying layer design,” Opt. Lett. 31, 3333–3335 (2006).
    [CrossRef] [PubMed]
  5. N. Destouches, J. C. Pommier, O. Parriaux, and T. Clausnitzer, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14, 12613–12622 (2006).
    [CrossRef] [PubMed]
  6. R. Magnusson and S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34, 8106–8109 (1995).
    [CrossRef] [PubMed]
  7. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584–586 (2001).
    [CrossRef]
  8. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004).
    [CrossRef] [PubMed]
  9. E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94 (2006).
    [CrossRef]
  10. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36, 3054–3056 (2011).
    [CrossRef] [PubMed]
  11. X. Zhang, Y. Jiang, J. Guo, and X. Lu, “Target classification using active laser polarimetric imaging technique,” Proc. SPIE 7850, 78502T (2010).
    [CrossRef]
  12. D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE 6233, 62331Q (2006).
    [CrossRef]
  13. B. M. Flusche, M. G. Gartley, and J. R. Schott, “Defining a process to fuse polarimetric and spectral data for target detection and explore the trade space via simulation,” J. Appl. Remote Sens. 4, 043550 (2010).
    [CrossRef]
  14. X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” Opt. Lett. 34, 124–126 (2009).
    [CrossRef] [PubMed]
  15. Y. Wang, Y. Kanamori, J. Ye, H. Sameshima, and K. Hane, “Fabrication and characterization of nanoscale resonant gratings on thin silicon membrane,” Opt. Express 17, 4938–4943 (2009).
    [CrossRef] [PubMed]
  16. J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
    [CrossRef] [PubMed]
  17. A.-L Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
    [CrossRef]
  18. O. Boyko, F. Lemarchand, A. Talneau, A.-L. Fehrembach, and A. Sentenac, “Experimental demonstration of ultrasharp unpolarized filtering by resonant gratings at oblique incidence,” J. Opt. Soc. Am. A 26, 676–679 (2009).
    [CrossRef]
  19. H. Xu-Hui, G. Ke, S. Tian-Yu, and W. Dong-Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27, 74211–74213 (2010).
    [CrossRef]
  20. A.-L. Fehrembach, K. C. S. Yu, A. Monmayrant, P. Arguel, A. Sentenac, and O. Gauthier-Lafaye, “Tunable, polarization independent, narrow-band filtering with one-dimensional crossed resonant gratings,” Opt. Lett. 36, 1662–1664 (2011).
    [CrossRef] [PubMed]
  21. J. P. Hugonin and P. Lalanne, “Reticolo software for grating analysis,” Institut of Optics Graduates School (2005).
  22. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
    [CrossRef]
  23. S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15, 4310–4320 (2007).
    [CrossRef] [PubMed]
  24. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J.-L. Pelouard, “Angle-resolved transmission measurements through anisotropic two-dimensional plasmonic crystals,” Opt. Lett. 33, 165–167 (2008).
    [CrossRef] [PubMed]
  25. A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A. 19, 1136–1144 (2002).
    [CrossRef]
  26. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B. 63, 033107 (2001).
    [CrossRef]
  27. J.-A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  28. F.-J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B. 66, 155412 (2002).
    [CrossRef]
  29. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
    [CrossRef]

2011 (3)

2010 (4)

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

H. Xu-Hui, G. Ke, S. Tian-Yu, and W. Dong-Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27, 74211–74213 (2010).
[CrossRef]

X. Zhang, Y. Jiang, J. Guo, and X. Lu, “Target classification using active laser polarimetric imaging technique,” Proc. SPIE 7850, 78502T (2010).
[CrossRef]

B. M. Flusche, M. G. Gartley, and J. R. Schott, “Defining a process to fuse polarimetric and spectral data for target detection and explore the trade space via simulation,” J. Appl. Remote Sens. 4, 043550 (2010).
[CrossRef]

2009 (3)

2008 (1)

2007 (1)

2006 (4)

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE 6233, 62331Q (2006).
[CrossRef]

M. L. Wu, C. L. Hsu, Y. C. Liu, C. M. Wang, and J. Y. Chang, “Silicon-based and suspended-membrane-type guided-mode resonance filters with a spectrum-modifying layer design,” Opt. Lett. 31, 3333–3335 (2006).
[CrossRef] [PubMed]

N. Destouches, J. C. Pommier, O. Parriaux, and T. Clausnitzer, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14, 12613–12622 (2006).
[CrossRef] [PubMed]

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94 (2006).
[CrossRef]

2005 (2)

A.-L Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

J. P. Hugonin and P. Lalanne, “Reticolo software for grating analysis,” Institut of Optics Graduates School (2005).

2004 (2)

Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004).
[CrossRef] [PubMed]

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

2002 (2)

F.-J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B. 66, 155412 (2002).
[CrossRef]

A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A. 19, 1136–1144 (2002).
[CrossRef]

2001 (2)

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B. 63, 033107 (2001).
[CrossRef]

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584–586 (2001).
[CrossRef]

2000 (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

1999 (1)

J.-A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1995 (1)

1992 (1)

R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

1990 (1)

Arguel, P.

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

Badano, G.

Bagby, J. S.

Bardou, N.

Billaudeau, C.

Boyko, O.

Brun, M.

Castle, K. R.

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE 6233, 62331Q (2006).
[CrossRef]

Cavanaugh, D. B.

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE 6233, 62331Q (2006).
[CrossRef]

Chang, J. Y.

Clausnitzer, T.

Collin, S.

Davenport, W.

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE 6233, 62331Q (2006).
[CrossRef]

de Lamaestre, R. E.

Deschamps, J.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Destouches, N.

Ding, Y.

Dong-Min, W.

H. Xu-Hui, G. Ke, S. Tian-Yu, and W. Dong-Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27, 74211–74213 (2010).
[CrossRef]

Fan, Z.

Fehrembach, A.-L

A.-L Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

Fehrembach, A.-L.

Flusche, B. M.

B. M. Flusche, M. G. Gartley, and J. R. Schott, “Defining a process to fuse polarimetric and spectral data for target detection and explore the trade space via simulation,” J. Appl. Remote Sens. 4, 043550 (2010).
[CrossRef]

Fu, X.

Garcia-Vidal, F. J.

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94 (2006).
[CrossRef]

J.-A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Garcia-Vidal, F.-J.

F.-J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B. 66, 155412 (2002).
[CrossRef]

Gartley, M. G.

B. M. Flusche, M. G. Gartley, and J. R. Schott, “Defining a process to fuse polarimetric and spectral data for target detection and explore the trade space via simulation,” J. Appl. Remote Sens. 4, 043550 (2010).
[CrossRef]

Gauthier-Lafaye, O.

Ghenuche, P.

Gravrand, O.

Guérineau, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Guo, J.

X. Zhang, Y. Jiang, J. Guo, and X. Lu, “Target classification using active laser polarimetric imaging technique,” Proc. SPIE 7850, 78502T (2010).
[CrossRef]

Haïdar, R.

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36, 3054–3056 (2011).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Hane, K.

Hazart, J.

Hsu, C. L.

Hugonin, J. P.

J. P. Hugonin and P. Lalanne, “Reticolo software for grating analysis,” Institut of Optics Graduates School (2005).

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

Jiang, Y.

X. Zhang, Y. Jiang, J. Guo, and X. Lu, “Target classification using active laser polarimetric imaging technique,” Proc. SPIE 7850, 78502T (2010).
[CrossRef]

Kanamori, Y.

Ke, G.

H. Xu-Hui, G. Ke, S. Tian-Yu, and W. Dong-Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27, 74211–74213 (2010).
[CrossRef]

Lalanne, P.

J. P. Hugonin and P. Lalanne, “Reticolo software for grating analysis,” Institut of Optics Graduates School (2005).

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

Lemarchand, F.

Liu, Y. C.

Lu, X.

X. Zhang, Y. Jiang, J. Guo, and X. Lu, “Target classification using active laser polarimetric imaging technique,” Proc. SPIE 7850, 78502T (2010).
[CrossRef]

Möller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

Magnusson, R.

Martin-Moreno, L.

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94 (2006).
[CrossRef]

F.-J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B. 66, 155412 (2002).
[CrossRef]

Maystre, D.

A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A. 19, 1136–1144 (2002).
[CrossRef]

Moharam, M. G.

Monmayrant, A.

Moreno, E.

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94 (2006).
[CrossRef]

Nicoletti, S.

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

Pardo, F.

Parriaux, O.

Pelouard, J. L.

Pelouard, J.-L

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Pelouard, J.-L.

Pendry, J. B.

J.-A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Perchec, J. L.

Pommier, J. C.

Porto, J.-A.

J.-A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rochat, N.

Sakat, E.

Sameshima, H.

Sauvan, C.

Schott, J. R.

B. M. Flusche, M. G. Gartley, and J. R. Schott, “Defining a process to fuse polarimetric and spectral data for target detection and explore the trade space via simulation,” J. Appl. Remote Sens. 4, 043550 (2010).
[CrossRef]

Sentenac, A.

Shao, J.

Stenzel, O.

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

Talneau, A.

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B. 63, 033107 (2001).
[CrossRef]

Tian-Yu, S.

H. Xu-Hui, G. Ke, S. Tian-Yu, and W. Dong-Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27, 74211–74213 (2010).
[CrossRef]

Tibuleac, S.

Vincent, G.

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36, 3054–3056 (2011).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Wang, C. M.

Wang, S.

R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Wang, S. S.

Wang, Y.

Wu, M. L.

Xu-Hui, H.

H. Xu-Hui, G. Ke, S. Tian-Yu, and W. Dong-Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27, 74211–74213 (2010).
[CrossRef]

Ye, J.

Yi, K.

Yu, K. C. S.

Zhang, X.

X. Zhang, Y. Jiang, J. Guo, and X. Lu, “Target classification using active laser polarimetric imaging technique,” Proc. SPIE 7850, 78502T (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

R. Magnusson and S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

A.-L Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

Chin. Phys. Lett. (1)

H. Xu-Hui, G. Ke, S. Tian-Yu, and W. Dong-Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27, 74211–74213 (2010).
[CrossRef]

Institut of Optics Graduates School (1)

J. P. Hugonin and P. Lalanne, “Reticolo software for grating analysis,” Institut of Optics Graduates School (2005).

J. Appl. Remote Sens. (1)

B. M. Flusche, M. G. Gartley, and J. R. Schott, “Defining a process to fuse polarimetric and spectral data for target detection and explore the trade space via simulation,” J. Appl. Remote Sens. 4, 043550 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. A. (1)

A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A. 19, 1136–1144 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Phys. Rev. B. (2)

F.-J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B. 66, 155412 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B. 63, 033107 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

J.-A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Proc. SPIE (3)

X. Zhang, Y. Jiang, J. Guo, and X. Lu, “Target classification using active laser polarimetric imaging technique,” Proc. SPIE 7850, 78502T (2010).
[CrossRef]

D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE 6233, 62331Q (2006).
[CrossRef]

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Bandpass filters based on sub-wavelength metallic gratings deposited on a free-standing dielectric layer (a) Guided mode transmission mechanism. tm=100 nm, td=650 nm, w =200 nm; (b) 1D grating with dx =2110 nm; 2D grating with rectangular patterns: the grating period are dx =2110 nm and dy = 3000 nm; 2D grating with square patterns: dx = dy =2110 nm).

Fig. 2
Fig. 2

Transmission spectra measured at normal incidence. The light is polarized with the H field parallel to the x-axis (dashed dark line) or parallel to the y-axis (red line). (a) 1D structure ; (b) 2D structure with rectangular patterns; (c) 2D structure with square patterns. Insets: Scanning electron microscope images of the samples (right), and wavevectors of the propagative diffracted orders in the SiNx layer at the resonance wavelength (left).

Fig. 3
Fig. 3

Angle-resolved transmission through the 1D structure as a function of the wavenumber, σ =1/λ and of the incident wavevector. (a) and (b) Measurements. (c) and (d) Calculations. (a) and (c) The rotation axis is parallel to the H field: the incident wavevector is k x ( 0 ) = 2 π sin ( θ x ) / λ; (b) and (d) The rotation axis is parallel to the E field: the incident wavevector is k y ( 0 ) = 2 π sin ( θ y ) / λ. Solid and dashed lines: calculated dispersion curves related to the guided modes kgTM and kgTE respectively (for a continuous gold layer)

Fig. 4
Fig. 4

Angle-resolved transmission measurements through a structure with 2D square patterns as a function of σ=1/λ, the wavenumber, and of the incident wavevector. (a) The incident wavevector is k x ( 0 ) = 2 π sin ( θ x ) / λ; (b) The incident wave vector is k y ( 0 ) = 2 π sin ( θ y ) / λ.

Fig. 5
Fig. 5

Angle-resolved transmission measurements through a structure with 2D rectangular patterns as a function of σ=1/λ, the wavenumber, and of the incident wavevector. (a) The H field is parallel to the slits separated by a period of 2110 nm and the incident wave vector is k y ( 0 ) = 2 π sin ( θ y ) / λ; (b) The H field is parallel to the slits separated by a period of 3000 nm and the incident wavevector is k x ( 0 ) = 2 π sin ( θ x ) / λ.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k / / ( ± 1 ) = ( k x ( 0 ) ± K x ) x + ( k y ( 0 ) ± K y ) y
k / / ( ± 1 ) = ( k x ( 0 ) ± K x ) x
k / / ( + 1 ) = k g T M ( λ 1 )
k / / ( 1 ) = k g T M ( λ 2 )
k / / ( ± 1 ) = ± K x x + k y ( 0 ) y
k / / ( + 1 ) = k / / ( 1 ) = k g T M ( λ 3 )
k / / ( + 1 ) = k / / ( 1 ) = k g T E ( λ 4 )
( 2 π σ g ) 2 ( λ ) k y ( 0 ) ( λ ) 2 = K x 2

Metrics