Abstract

Coherent Rayleigh–Brillouin scattering (CRBS) line shapes generated from all narrow-band pump experiment, Direct Simulation Monte-Carlo (DSMC) approach, and published kinetic line shape models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The kinetic line shape models require uncertain gas properties, such as bulk viscosity, and assume linearization of the kinetic equations from low intensities (<1 x 1015 W/m2) operating in the perturbative regime. DSMC, a statistical approach to the Boltzmann equation, requires only basic gas parameters available in literature and simulates the forcing function from first principles without assumptions on laser intensity. The narrow band experiments show similar results to broadband experiments and validate the use of DSMC for the prediction of CRBS line shapes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  2. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).
  3. J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
    [CrossRef] [PubMed]
  4. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
    [CrossRef] [PubMed]
  5. X. Pan, P. F. Barker, A. V. Meschanov, R. B. Miles, and J. H. Grinstead, “Temperature measurements in plasmas using coherent Rayleigh scattering,” in Proceedings of the Aerospace Sciences Meeting and Exhibit, AIAA-2001–0416 (Reno, NV, 2001).
  6. X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
    [CrossRef] [PubMed]
  7. X. P. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
    [CrossRef]
  8. M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
    [CrossRef]
  9. X. Pan, “Coherent Rayleigh–Brillouin scattering,” Princeton University (Ph.D. Thesis, 2003).
  10. D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett. 422(4-6), 571–574 (2006).
    [CrossRef]
  11. T. Lilly, S. Gimelshein, A. Ketsdever, and M. Shneider, “Energy deposition into a collisional gas from optical lattices formed in an optical cavity,” in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, 533–538, 2008, T. Abe ed. (AIP, New York, 2009).
  12. T. Lilly, A. Ketsdever, and S. Gimelshein, “Resonant laser manipulation of an atomic beam,” in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics, 825–830, 2010, D. Levin ed. (AIP, New York, 2011).
  13. T. Lilly, “Simulated nonresonant pulsed laser manipulation of a nitrogen flow,” Appl. Phys. B 104(4), 961–968 (2011).
    [CrossRef]
  14. M. N. Shneider and P. F. Barker, “Optical Landau damping,” Phys. Rev. A 71(5), 053403 (2005).
    [CrossRef]
  15. M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
    [CrossRef]
  16. A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B 81(1), 101–111 (2005).
    [CrossRef]
  17. A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B 81(1), 113–129 (2005).
    [CrossRef]
  18. H. Eichler, P. Gunter, and D. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).
  19. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
    [CrossRef]
  20. H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc. 37(6), 655–662 (2006).
    [CrossRef]
  21. A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
    [CrossRef] [PubMed]
  22. E. Hecht, Optics (Addison Wesley, 2002).
  23. T. X. Phuoc, “Laser spark ignition experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
    [CrossRef]
  24. H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
    [CrossRef] [PubMed]
  25. M. S. Ivanov and S. F. Gimelshein, “Current status and prospects of the DSMC modeling of near-continuum flows of non-reacting and reacting gases,” in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics, 2002, A. Ketsdever, ed. (AIP, 2003), pp. 339–348.
  26. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, 1994).
  27. M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics 4, 251–268 (1997).
  28. C. Borgnakke and P. Larsen, “Statistical collision model for Monte Carlo simulation of polyatomic gas mixture,” J. Comput. Phys. 18(4), 405–420 (1975).
    [CrossRef]
  29. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
    [CrossRef] [PubMed]
  30. T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
    [CrossRef]
  31. J. G. Parker, “Rotational and vibrational relaxation in diatomic gases,” Phys. Fluids 2(4), 449–462 (1959).
    [CrossRef]
  32. R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
    [CrossRef]
  33. S. F. Gimelshein, I. D. Boyd, and M. S. Ivanov, “DSMC modeling of vibration-translation energy transfer in hypersonic rarefied flows,” in Proceedings of the 33rd AIAA Thermophysics Conference, AIAA-99–3451, 1999.
  34. N. E. Gimelshein, S. F. Gimelshein, and D. A. Levin, “Hydroxyl formation mechanisms and models in high-altitude hypersonic flows,” AIAA J. 41(7), 1323–1331 (2003).
    [CrossRef]
  35. G. L. Hill and T. G. Winter, “Effect of Temperature on the Rotational and Vibrational Relaxation Times of Some Hydrocarbons,” J. Chem. Phys. 49(1), 440–444 (1968).
    [CrossRef]
  36. J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids 13(2), 291–308 (1970).
    [CrossRef]
  37. R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
    [CrossRef] [PubMed]
  38. D. R. Lide ed., CRC Handbook of Chemistry and Physics 90th ed. (CRC, 2009).
  39. G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K,” Physica 64(2), 278–288 (1973).
    [CrossRef]
  40. G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2(12), 2252–2254 (1990).
    [CrossRef]

2011

T. Lilly, “Simulated nonresonant pulsed laser manipulation of a nitrogen flow,” Appl. Phys. B 104(4), 961–968 (2011).
[CrossRef]

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
[CrossRef]

2010

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
[CrossRef] [PubMed]

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

2007

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

2006

D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett. 422(4-6), 571–574 (2006).
[CrossRef]

H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc. 37(6), 655–662 (2006).
[CrossRef]

2005

M. N. Shneider and P. F. Barker, “Optical Landau damping,” Phys. Rev. A 71(5), 053403 (2005).
[CrossRef]

X. P. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B 81(1), 101–111 (2005).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B 81(1), 113–129 (2005).
[CrossRef]

2004

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

2003

N. E. Gimelshein, S. F. Gimelshein, and D. A. Levin, “Hydroxyl formation mechanisms and models in high-altitude hypersonic flows,” AIAA J. 41(7), 1323–1331 (2003).
[CrossRef]

2002

2000

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
[CrossRef] [PubMed]

T. X. Phuoc, “Laser spark ignition experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

1997

M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics 4, 251–268 (1997).

1990

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2(12), 2252–2254 (1990).
[CrossRef]

1975

C. Borgnakke and P. Larsen, “Statistical collision model for Monte Carlo simulation of polyatomic gas mixture,” J. Comput. Phys. 18(4), 405–420 (1975).
[CrossRef]

1973

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K,” Physica 64(2), 278–288 (1973).
[CrossRef]

1970

J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids 13(2), 291–308 (1970).
[CrossRef]

1968

G. L. Hill and T. G. Winter, “Effect of Temperature on the Rotational and Vibrational Relaxation Times of Some Hydrocarbons,” J. Chem. Phys. 49(1), 440–444 (1968).
[CrossRef]

1963

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[CrossRef]

1959

J. G. Parker, “Rotational and vibrational relaxation in diatomic gases,” Phys. Fluids 2(4), 449–462 (1959).
[CrossRef]

Alberga, A. H.

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K,” Physica 64(2), 278–288 (1973).
[CrossRef]

Barker, P.

H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc. 37(6), 655–662 (2006).
[CrossRef]

Barker, P. F.

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

M. N. Shneider and P. F. Barker, “Optical Landau damping,” Phys. Rev. A 71(5), 053403 (2005).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
[CrossRef] [PubMed]

Beenakker, J. J. M.

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K,” Physica 64(2), 278–288 (1973).
[CrossRef]

Bishop, A.

H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc. 37(6), 655–662 (2006).
[CrossRef]

Bookey, H.

H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc. 37(6), 655–662 (2006).
[CrossRef]

Bookey, H. T.

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

Borgnakke, C.

C. Borgnakke and P. Larsen, “Statistical collision model for Monte Carlo simulation of polyatomic gas mixture,” J. Comput. Phys. 18(4), 405–420 (1975).
[CrossRef]

Bruno, D.

D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett. 422(4-6), 571–574 (2006).
[CrossRef]

Buck, U.

R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
[CrossRef] [PubMed]

Capitelli, M.

D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett. 422(4-6), 571–574 (2006).
[CrossRef]

Cornella, B.

T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
[CrossRef]

Dam, N.

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Dam, N. J.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

de Wijn, A.

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

de Wijn, A. S.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

Emanuel, G.

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2(12), 2252–2254 (1990).
[CrossRef]

Gimelshein, N. E.

N. E. Gimelshein, S. F. Gimelshein, and D. A. Levin, “Hydroxyl formation mechanisms and models in high-altitude hypersonic flows,” AIAA J. 41(7), 1323–1331 (2003).
[CrossRef]

Gimelshein, S.

T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
[CrossRef]

R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
[CrossRef] [PubMed]

Gimelshein, S. F.

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

N. E. Gimelshein, S. F. Gimelshein, and D. A. Levin, “Hydroxyl formation mechanisms and models in high-altitude hypersonic flows,” AIAA J. 41(7), 1323–1331 (2003).
[CrossRef]

M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics 4, 251–268 (1997).

Grinstead, J. H.

Hemmerling, B.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B 81(1), 113–129 (2005).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B 81(1), 101–111 (2005).
[CrossRef]

Hill, G. L.

G. L. Hill and T. G. Winter, “Effect of Temperature on the Rotational and Vibrational Relaxation Times of Some Hydrocarbons,” J. Chem. Phys. 49(1), 440–444 (1968).
[CrossRef]

Ivanov, M. S.

M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics 4, 251–268 (1997).

Jansen, R.

R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
[CrossRef] [PubMed]

Kashkovsky, A. V.

M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics 4, 251–268 (1997).

Ketsdever, A.

T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
[CrossRef]

Kozlov, D. N.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B 81(1), 113–129 (2005).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B 81(1), 101–111 (2005).
[CrossRef]

Larsen, P.

C. Borgnakke and P. Larsen, “Statistical collision model for Monte Carlo simulation of polyatomic gas mixture,” J. Comput. Phys. 18(4), 405–420 (1975).
[CrossRef]

Levin, D. A.

N. E. Gimelshein, S. F. Gimelshein, and D. A. Levin, “Hydroxyl formation mechanisms and models in high-altitude hypersonic flows,” AIAA J. 41(7), 1323–1331 (2003).
[CrossRef]

Lilly, T.

T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
[CrossRef]

T. Lilly, “Simulated nonresonant pulsed laser manipulation of a nitrogen flow,” Appl. Phys. B 104(4), 961–968 (2011).
[CrossRef]

Longo, S.

D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett. 422(4-6), 571–574 (2006).
[CrossRef]

Lordi, J. A.

J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids 13(2), 291–308 (1970).
[CrossRef]

Manteghi, A.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

Markelov, G. N.

M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics 4, 251–268 (1997).

Mates, R. E.

J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids 13(2), 291–308 (1970).
[CrossRef]

Meijer, A.

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Meijer, A. S.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

Meschanov, A.

Miles, R. B.

X. P. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

Millikan, R. C.

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[CrossRef]

Minelli, P.

D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett. 422(4-6), 571–574 (2006).
[CrossRef]

Pan, X.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

Pan, X. P.

X. P. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

Parker, J. G.

J. G. Parker, “Rotational and vibrational relaxation in diatomic gases,” Phys. Fluids 2(4), 449–462 (1959).
[CrossRef]

Peters, M. F. E.

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

Phuoc, T. X.

T. X. Phuoc, “Laser spark ignition experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

Prangsma, G. J.

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K,” Physica 64(2), 278–288 (1973).
[CrossRef]

Quiller, T.

T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
[CrossRef]

Radi, P. P.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B 81(1), 113–129 (2005).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B 81(1), 101–111 (2005).
[CrossRef]

Shneider, M. N.

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc. 37(6), 655–662 (2006).
[CrossRef]

M. N. Shneider and P. F. Barker, “Optical Landau damping,” Phys. Rev. A 71(5), 053403 (2005).
[CrossRef]

X. P. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B 81(1), 101–111 (2005).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B 81(1), 113–129 (2005).
[CrossRef]

Ubachs, W.

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

van de Water, W.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

van Duijn, E.

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Vieitez, M.

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

White, D. R.

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[CrossRef]

Winter, T. G.

G. L. Hill and T. G. Winter, “Effect of Temperature on the Rotational and Vibrational Relaxation Times of Some Hydrocarbons,” J. Chem. Phys. 49(1), 440–444 (1968).
[CrossRef]

Witschas, B.

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Wysong, I.

R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
[CrossRef] [PubMed]

Zeifman, M.

R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
[CrossRef] [PubMed]

AIAA J.

N. E. Gimelshein, S. F. Gimelshein, and D. A. Levin, “Hydroxyl formation mechanisms and models in high-altitude hypersonic flows,” AIAA J. 41(7), 1323–1331 (2003).
[CrossRef]

Appl. Phys. B

T. Lilly, “Simulated nonresonant pulsed laser manipulation of a nitrogen flow,” Appl. Phys. B 104(4), 961–968 (2011).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings I,” Appl. Phys. B 81(1), 101–111 (2005).
[CrossRef]

A. Stampanoni-Panariello, D. N. Kozlov, P. P. Radi, and B. Hemmerling, “Gas-phase diagnostics by laser-induced gratings II,” Appl. Phys. B 81(1), 113–129 (2005).
[CrossRef]

Appl. Phys. Lett.

T. Lilly, A. Ketsdever, B. Cornella, T. Quiller, and S. Gimelshein, “Gas density perturbations induced by a pulsed optical lattice,” Appl. Phys. Lett. 99(12), 124101 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

Chem. Phys. Lett.

D. Bruno, M. Capitelli, S. Longo, and P. Minelli, “Monte Carlo simulation of light scattering spectra in atomic gases,” Chem. Phys. Lett. 422(4-6), 571–574 (2006).
[CrossRef]

J. Chem. Phys.

R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” J. Chem. Phys. 39(12), 3209–3213 (1963).
[CrossRef]

G. L. Hill and T. G. Winter, “Effect of Temperature on the Rotational and Vibrational Relaxation Times of Some Hydrocarbons,” J. Chem. Phys. 49(1), 440–444 (1968).
[CrossRef]

R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, “Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions,” J. Chem. Phys. 132(24), 244105 (2010).
[CrossRef] [PubMed]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

J. Comput. Phys.

C. Borgnakke and P. Larsen, “Statistical collision model for Monte Carlo simulation of polyatomic gas mixture,” J. Comput. Phys. 18(4), 405–420 (1975).
[CrossRef]

J. Raman Spectrosc.

H. Bookey, A. Bishop, M. N. Shneider, and P. Barker, “Narrow-band Coherent Rayleigh scattering,” J. Raman Spectrosc. 37(6), 655–662 (2006).
[CrossRef]

Opt. Commun.

T. X. Phuoc, “Laser spark ignition experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[CrossRef]

Opt. Lett.

Phys. Fluids

J. A. Lordi and R. E. Mates, “Rotational Relaxation in Nonpolar Diatomic Gases,” Phys. Fluids 13(2), 291–308 (1970).
[CrossRef]

J. G. Parker, “Rotational and vibrational relaxation in diatomic gases,” Phys. Fluids 2(4), 449–462 (1959).
[CrossRef]

Phys. Fluids A

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2(12), 2252–2254 (1990).
[CrossRef]

Phys. Rev. A

X. P. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

M. Vieitez, E. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. N. Shneider and P. F. Barker, “Optical Landau damping,” Phys. Rev. A 71(5), 053403 (2005).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

Phys. Rev. Lett.

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

Physica

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K,” Physica 64(2), 278–288 (1973).
[CrossRef]

Thermophys. Aeromechanics

M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, and G. N. Markelov, “Statistical simulation of hypersonic flows from free-molecular to near-continuum regimes,” Thermophys. Aeromechanics 4, 251–268 (1997).

Other

E. Hecht, Optics (Addison Wesley, 2002).

M. S. Ivanov and S. F. Gimelshein, “Current status and prospects of the DSMC modeling of near-continuum flows of non-reacting and reacting gases,” in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics, 2002, A. Ketsdever, ed. (AIP, 2003), pp. 339–348.

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, 1994).

S. F. Gimelshein, I. D. Boyd, and M. S. Ivanov, “DSMC modeling of vibration-translation energy transfer in hypersonic rarefied flows,” in Proceedings of the 33rd AIAA Thermophysics Conference, AIAA-99–3451, 1999.

D. R. Lide ed., CRC Handbook of Chemistry and Physics 90th ed. (CRC, 2009).

X. Pan, P. F. Barker, A. V. Meschanov, R. B. Miles, and J. H. Grinstead, “Temperature measurements in plasmas using coherent Rayleigh scattering,” in Proceedings of the Aerospace Sciences Meeting and Exhibit, AIAA-2001–0416 (Reno, NV, 2001).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).

X. Pan, “Coherent Rayleigh–Brillouin scattering,” Princeton University (Ph.D. Thesis, 2003).

H. Eichler, P. Gunter, and D. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

T. Lilly, S. Gimelshein, A. Ketsdever, and M. Shneider, “Energy deposition into a collisional gas from optical lattices formed in an optical cavity,” in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, 533–538, 2008, T. Abe ed. (AIP, New York, 2009).

T. Lilly, A. Ketsdever, and S. Gimelshein, “Resonant laser manipulation of an atomic beam,” in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics, 825–830, 2010, D. Levin ed. (AIP, New York, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a one-dimensional optical lattice, as formed by a CRBS experiment.

Fig. 2
Fig. 2

Schematic of experimental setup.

Fig. 3
Fig. 3

Phase matching condition for signal backscatter along the path of pump 2.

Fig. 4
Fig. 4

Diagram of the test chamber.

Fig. 5
Fig. 5

(a) SMILE simulation domain and maximum potential well depth [K] for an intensity of 3 x 1014 W/m2 [30] and (b) simulated density for a lattice velocity of 450 m/s.

Fig. 8
Fig. 8

Comparison of numerical and kinetic line shape results for (a) varying N2 pressure, (b) water vapor using s6 & ηb/η = 1000, and (c) water vapor using s6 & various ηb/η. Upper figure shows normalized signal, lower figure shows residual between values and kinetic line shape model.

Fig. 6
Fig. 6

Comparison of low intensity CRBS line shapes for Ar, N2, and CH4 at 300 K. Upper figure shows normalized signal, lower figure shows residual between values and kinetic line shape model.

Fig. 7
Fig. 7

Comparison of low intensity CRBS line shapes for Ar, N2, and CH4 at 500 K. Upper figure shows normalized signal, lower figure shows residual between values and kinetic line shape model.

Tables (2)

Tables Icon

Table 1 List of DSMC Parameters for Each Gas Species

Tables Icon

Table 2 List of Gas Parameters for Kinetic Line Shape Models

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F=U=( α/2 ) E 2
E 2 ( x,t )= E 1 2 cos 2 ( k 1 x ω 1 t)+ E 2 2 cos 2 ( k 2 x ω 2 t)+ E 1 E 2 [ cos( ( k 1 k 2 )x( ω 1 ω 2 )t )+ cos( ( k 1 + k 2 )x( ω 1 + ω 2 )t ) ]
F=U=( αq /2 ) E 1 E 2 sin( qxΩt )
I( r,t )= I max exp( 4ln( 2 )[ ( t t o ) 2 / τ 2 + r 2 / D 2 ] ) E 0 2 = 2I / c ϵ 0
F x ( x,r,t )= αq / c ϵ 0 I 1 (r,t) I 2 (r,t)  sin(qxΩt)
I sig I probe δ ρ 2
δ ρ 2 I pump1 I pump2
y= 8 3 2 π ρ 0 k b T 0 /M ηq

Metrics