Abstract

Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  2. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
    [CrossRef] [PubMed]
  3. N. N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C. C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011).
    [CrossRef] [PubMed]
  4. Y. Tang, H.-wen Chen, and J. E. Bowers, “Hybrid Electro-Refraction and Electro-Absorption Modulators on Silicon,” in Proceedings of 2011 8th IEEE Conference on Group IV photonics (London, United Kingdom, 2011), 356–358.
  5. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
    [CrossRef]
  6. N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010).
    [CrossRef] [PubMed]
  7. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010).
    [CrossRef] [PubMed]
  8. M. Ziebell, D. Marris-Morini, G. Rasigade, P. Crozat, J. M. Fédéli, P. Grosse, E. Cassan, and L. Vivien, “Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions,” Opt. Express19(15), 14690–14695 (2011).
    [CrossRef] [PubMed]
  9. X. Xiao, Z. Li, Y. Hu, Y. Yu, and J. Yu, “Misalignment-tolerant High-speed Silicon Microring Modulator with Interleaved p-n Junctions,” in Proceedings of 2011 8th IEEE Conference on Group IV photonics (London, United Kingdom, 2011), 359–361.
  10. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  11. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011).
    [CrossRef] [PubMed]
  12. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
    [CrossRef]
  13. T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
    [CrossRef]
  14. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  15. H. Yu, W. Bogaerts, and A. De Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron.46(12), 1763–1768 (2010).
    [CrossRef]
  16. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
    [CrossRef]
  17. Z. Y. Li, D. X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J. Z. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express17(18), 15947–15958 (2009).
    [CrossRef] [PubMed]
  18. D. Samara-Rubio, U. D. Keil, T. Ling Liao, Franck, D. W. Ansheng Liu, D. Hodge, Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4 Gb/s,” J. Lightwave Technol.23(12), 4305–4314 (2005).
    [CrossRef]
  19. H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol.30(11), 1602–1609 (2012).
    [CrossRef]
  20. J. Shin, S. R. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightwave Technol.29(1), 48–52 (2011).
    [CrossRef]

2012

2011

J. Shin, S. R. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightwave Technol.29(1), 48–52 (2011).
[CrossRef]

N. N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C. C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
[CrossRef] [PubMed]

M. Ziebell, D. Marris-Morini, G. Rasigade, P. Crozat, J. M. Fédéli, P. Grosse, E. Cassan, and L. Vivien, “Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions,” Opt. Express19(15), 14690–14695 (2011).
[CrossRef] [PubMed]

2010

N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010).
[CrossRef] [PubMed]

P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010).
[CrossRef] [PubMed]

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

H. Yu, W. Bogaerts, and A. De Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

2009

2007

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

2005

2004

Alloatti, L.

Ang, K.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Ansheng Liu, D. W.

Asghari, M.

Baets, R.

Barklund, A.

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Bienstman, P.

Bogaerts, W.

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol.30(11), 1602–1609 (2012).
[CrossRef]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
[CrossRef] [PubMed]

H. Yu, W. Bogaerts, and A. De Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Cassan, E.

Cheben, P.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

D. Samara-Rubio, U. D. Keil, T. Ling Liao, Franck, D. W. Ansheng Liu, D. Hodge, Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4 Gb/s,” J. Lightwave Technol.23(12), 4305–4314 (2005).
[CrossRef]

Crozat, P.

Cunningham, J.

Cunningham, J. E.

Dagli, N.

De Keersgieter, A.

H. Yu, W. Bogaerts, and A. De Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Dinu, R.

Dong, P.

Dumon, P.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
[CrossRef] [PubMed]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Emerson, N. G.

Fang, Q.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Fedeli, J.

Fedeli, J.-M.

Fédéli, J. M.

Feng, D.

Feng, N. N.

Fong, J.

Fournier, M.

Franck,

Freude, W.

Gardes, F. Y.

Grosse, P.

Hillerkuss, D.

Hodge, D.

Hu, Y.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Janz, S.

Keil, U. D.

Koos, C.

Korn, D.

Krishnamoorthy, A. V.

Kung, C. C.

Kwong, D.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
[CrossRef]

Leuthold, J.

Li, G.

Li, J.

Li, Z. Y.

Liang, H.

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Liao, S.

Ling Liao, T.

Liow, T.-Y.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Lo, G.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Luo, Y.

Marris-Morini, D.

Mashanovich, G.

McKinnon, W. R.

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Palmer, R.

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Qian, W.

Rasigade, G.

Reed, G. T.

Rubin,

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Sakamoto, S. R.

Samara-Rubio, D.

Schmid, J. H.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Shafiiha, R.

Shin, J.

Song, J.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Taillaert, D.

Thomson, D. J.

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
[CrossRef]

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Vivien, L.

Wang, X.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
[CrossRef]

Wieland, J.

Xiong, Y.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Xu, D. X.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
[CrossRef]

Yu, H.

Yu, J. Z.

Yu, M.

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Zheng, D.

Zheng, X.

Ziebell, M.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
[CrossRef]

Electron. Lett.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

IEEE J. Quantum Electron.

H. Yu, W. Bogaerts, and A. De Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

T.-Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Opt. Express

Z. Y. Li, D. X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J. Z. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express17(18), 15947–15958 (2009).
[CrossRef] [PubMed]

N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010).
[CrossRef] [PubMed]

N. N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C. C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011).
[CrossRef] [PubMed]

M. Ziebell, D. Marris-Morini, G. Rasigade, P. Crozat, J. M. Fédéli, P. Grosse, E. Cassan, and L. Vivien, “Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions,” Opt. Express19(15), 14690–14695 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Other

X. Xiao, Z. Li, Y. Hu, Y. Yu, and J. Yu, “Misalignment-tolerant High-speed Silicon Microring Modulator with Interleaved p-n Junctions,” in Proceedings of 2011 8th IEEE Conference on Group IV photonics (London, United Kingdom, 2011), 359–361.

Y. Tang, H.-wen Chen, and J. E. Bowers, “Hybrid Electro-Refraction and Electro-Absorption Modulators on Silicon,” in Proceedings of 2011 8th IEEE Conference on Group IV photonics (London, United Kingdom, 2011), 356–358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic 3D diagrams and top views of the two doping patterns: (a) interdigitated PN junction; (b) lateral PN junction. Shaded areas in top views mark positions of rib waveguides.

Fig. 2
Fig. 2

Profiles of phosphorus distribution (a), boron distribution (b), and optical mode (c) inside the waveguide. TCAD tool is used to calculate the ion distribution after implantation and annealing.

Fig. 3
Fig. 3

Simulated modulation efficiency and capacitance of the interdigitated PN junction as a function of the overlap length L between two adjacent interdigitated arms. The doping concentration and the width W during the simulation is 1 × 1018/cm3 and W = 300 nm respectively.

Fig. 4
Fig. 4

Measured transmission spectra of a 3 mm long MZ modulator with an interdigitated PN junction with W = 250 nm. The length difference between the two arms is 40 µm. The doping concentration is 2 × 1018/cm3. The inset shows the phase shift as a function of reverse bias.

Fig. 5
Fig. 5

Measured modulation efficiency VπLπ (a) and the optical loss (b) as a function of the reverse bias for interdigitated PN junction embedded waveguides. The doping concentration is 2 × 1018/cm3.

Fig. 6
Fig. 6

Measured modulation efficiency VπLπ and optical loss of the lateral PN junction as a function of the gap d between the P and the N implantation windows. VπLπ corresponds to a reverse bias of −6 V. The doping concentration is 2 × 1018/cm3.

Fig. 7
Fig. 7

Measured and simulated VπLπ (a), optical loss (b) and depletion capacitance (c) as a function of the reverse bias for the interdigitated and the lateral PN junctions. The doping concentration is 1 × 1018/cm3.

Fig. 8
Fig. 8

S11 measurement together with curve fitting result. The reverse bias is 0 V. (a) interdigitated PN junction of 0.5 mm. (b) interdigitated PN junction of 1.5 mm. (c) lateral PN junction of 0.5 mm. (d) lateral PN junction of 1.5 mm.

Fig. 9
Fig. 9

EO frequency responses (the electrical definition) and eye diagrams of MZ modulators with the interdigitated PN junction. The doping concentration is 1 × 1018/cm3. (a) EO frequency responses for different phase shifter lengths at 0 V. (b) 8 Gbit/s eye diagram of 0.5 mm phase shifter. (c) 10 Gbit/s eye diagram of 0.5 mm phase shifter. In (b) and (c) the reverse bias is −2.5 V, and the peak-to-peak voltage of 215−1 PRBS signal is 3 V.

Fig. 10
Fig. 10

EO frequency responses and eye diagrams of MZ modulators with the lateral PN junction. The doping concentration is 1 × 1018/cm3. (a) EO frequency responses for different phase shifter lengths at 0 V. (b) 8 Gbit/s eye diagram of 1.5 mm phase shifter. (c) 10 Gbit/s eye diagram of 1.5 mm phase shifter. In (b) and (c) the reverse bias is −1.5 V, and the peak-to-peak voltage of 215−1 PRBS signal is 2 V.

Fig. 11
Fig. 11

Microscope images of the traveling wave electrodes to drive the 3 mm phase shifter. The dashed lines delineate the position of waveguide.

Fig. 12
Fig. 12

Eye diagrams of the MZ modulator with the lateral PN junction and the traveling wave electrode: (a) 25 Gbit/s. (b) 28 Gbit/s. (c) 35 Gbit/s. (d) 40 Gbit/s. Pattern length of the PRBS sequence is 27−1. The DC reverse biases are −5 V, −6 V, −6.2 V and −6.2 V for (a), (b), (c) and (d) respectively. The optical wavelength is fixed at 1555 nm.

Fig. 13
Fig. 13

Bit error rate of the MZ modulator with the lateral PN junction and the traveling wave electrode at 35 Gbit/s.

Tables (3)

Tables Icon

Table 1 RLC model of lumped electrode (doping concentration of 1 × 1018/cm3)

Tables Icon

Table 2 Performance of interdigitated and lateral PN junctions based phase shifters

Tables Icon

Table 3 Performance of interdigitated and lateral PN junctions based MZ modulators

Metrics