Abstract

We propose and analyze a new type of mechanically robust optical nanofocusing probe with minimized external environmental interference. The probe consists of a dielectric optical fiber terminated by a dielectric hemisphere – both covered in thin gold film whose thickness is reduced (tapered) along the surface of the hemisphere toward its tip. Thus the proposed probe combines the advantages of the diffraction-limited focusing due to annular propagation of the plasmon with its nanofocusing by a tapered metal wedge (i.e. a metal film with reducing local thickness). The numerical finite-element analysis demonstrates strongly subwavelength resolution of the described structure with the achievable size of the focal spot of ~20 nm with up to ~150 times enhancement of the local electric field intensity. Detailed physical interpretations of the obtained results are presented and possible application as a new type of SNOM probe for subwavelength imaging, spectroscopy and sensing are also discussed.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  3. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
    [CrossRef]
  4. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  5. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2(1), 31–37 (2007).
    [CrossRef]
  6. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311 (2008).
    [CrossRef]
  7. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
    [CrossRef] [PubMed]
  8. D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
    [CrossRef]
  9. K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A237(1-2), 103–105 (1997).
    [CrossRef]
  10. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
    [CrossRef] [PubMed]
  11. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008).
    [CrossRef]
  12. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
    [CrossRef]
  13. S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys.107(9), 094301 (2010).
    [CrossRef]
  14. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008).
    [CrossRef] [PubMed]
  15. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
    [CrossRef]
  16. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
    [CrossRef]
  17. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006).
    [CrossRef] [PubMed]
  18. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007).
    [CrossRef]
  19. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
    [CrossRef] [PubMed]
  20. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
    [CrossRef] [PubMed]
  21. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
    [CrossRef] [PubMed]
  22. M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
    [CrossRef]
  23. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B2(9), 1538–1540 (1985).
    [CrossRef]
  24. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
    [CrossRef]
  25. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]
  26. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62(4), 458–461 (1989).
    [CrossRef] [PubMed]
  27. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
    [CrossRef]
  28. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  29. T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402 (2007).
    [CrossRef]
  30. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
    [CrossRef] [PubMed]
  31. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007).
    [CrossRef] [PubMed]
  32. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008).
    [CrossRef]
  33. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
    [CrossRef]
  34. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012).
    [CrossRef]
  35. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
    [CrossRef] [PubMed]
  36. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005).
    [CrossRef]
  37. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
    [CrossRef] [PubMed]
  38. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011).
    [CrossRef] [PubMed]
  39. D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
    [CrossRef] [PubMed]
  40. K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009).
    [CrossRef]
  41. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A340(1-4), 299–302 (2005).
    [CrossRef]
  42. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
    [CrossRef] [PubMed]
  43. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
    [CrossRef]
  44. D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
    [CrossRef]
  45. D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
    [CrossRef] [PubMed]
  46. Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

2012

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012).
[CrossRef]

2011

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
[CrossRef] [PubMed]

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

2010

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys.107(9), 094301 (2010).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

2009

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009).
[CrossRef]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
[CrossRef]

2008

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008).
[CrossRef] [PubMed]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311 (2008).
[CrossRef]

2007

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2(1), 31–37 (2007).
[CrossRef]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

2006

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

2005

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005).
[CrossRef]

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A340(1-4), 299–302 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2004

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

2003

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

2000

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

1997

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A237(1-2), 103–105 (1997).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

1989

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62(4), 458–461 (1989).
[CrossRef] [PubMed]

1985

1873

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Alonso-Gonza’lez, P.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Arbel, D.

Arzubiaga, L.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Atkin, J. M.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Aubry, A.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Bartal, G.

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

Berweger, S.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Bharadwaj, P.

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402 (2007).
[CrossRef]

Casanova, F.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Chang, D. E.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

Choi, H.

Chuvilin, A.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Della Valle, G.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008).
[CrossRef]

Deutsch, B.

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Durach, M.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

Ebbsen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Fischer, U. C.

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62(4), 458–461 (1989).
[CrossRef] [PubMed]

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Ginzburg, P.

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys.107(9), 094301 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311 (2008).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
[CrossRef]

Guckenberger, R.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2(1), 31–37 (2007).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Hueso, L. E.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Issa, N. A.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2(1), 31–37 (2007).
[CrossRef]

Jung, J.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Kuipers, L. K.

Kurihara, K.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008).
[CrossRef]

Lei, D. Y.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Lukin, M. D.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

Luo, Y.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
[CrossRef] [PubMed]

Maier, S. A.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Martín-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Nam, S.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Nelson, K.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Nerkararyan, K. V.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A237(1-2), 103–105 (1997).
[CrossRef]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Olmon, R. L.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Orenstein, M.

Otomo, A.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008).
[CrossRef]

Park, H.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Pile, D. F. P.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62(4), 458–461 (1989).
[CrossRef] [PubMed]

Polman, A.

Pors, A.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Raschke, M. B.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A340(1-4), 299–302 (2005).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402 (2007).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311 (2008).
[CrossRef]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Takahara, J.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008).
[CrossRef]

Tan, S. J.

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys.107(9), 094301 (2010).
[CrossRef]

Thompson, J. D.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Verhagen, E.

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

Vogel, M. W.

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Vuletic, V.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

Wessel, J.

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Xu, X. G.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Yamamoto, K.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008).
[CrossRef]

Zhang, X.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007).
[CrossRef]

Zibrov, A. S.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

Zoller, P.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

ACS Nano

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano5(1), 597–607 (2011).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Phys. Lett.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

Arch. Mikrosk. Anat.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
[CrossRef]

J. Appl. Phys.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311 (2008).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys.107(9), 094301 (2010).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. A.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A.42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A.41(29), 295401 (2008).
[CrossRef]

Nano Lett.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett.10(1), 291–295 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Nat. Photonics

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

New J. Phys.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10(10), 105008 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A237(1-2), 103–105 (1997).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A375(39), 3464–3468 (2011).
[CrossRef]

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A340(1-4), 299–302 (2005).
[CrossRef]

Phys. Rev. B

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B75(3), 035431 (2007).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85(4), 045434 (2012).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402 (2007).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett.103(12), 123004 (2009).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62(4), 458–461 (1989).
[CrossRef] [PubMed]

Plasmonics

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2(1), 31–37 (2007).
[CrossRef]

Science

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Other

Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics