Abstract

We propose and analyze a new type of mechanically robust optical nanofocusing probe with minimized external environmental interference. The probe consists of a dielectric optical fiber terminated by a dielectric hemisphere – both covered in thin gold film whose thickness is reduced (tapered) along the surface of the hemisphere toward its tip. Thus the proposed probe combines the advantages of the diffraction-limited focusing due to annular propagation of the plasmon with its nanofocusing by a tapered metal wedge (i.e. a metal film with reducing local thickness). The numerical finite-element analysis demonstrates strongly subwavelength resolution of the described structure with the achievable size of the focal spot of ~20 nm with up to ~150 times enhancement of the local electric field intensity. Detailed physical interpretations of the obtained results are presented and possible application as a new type of SNOM probe for subwavelength imaging, spectroscopy and sensing are also discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]
  3. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
    [CrossRef]
  4. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [CrossRef] [PubMed]
  5. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
    [CrossRef]
  6. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
    [CrossRef]
  7. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
    [CrossRef] [PubMed]
  8. D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
    [CrossRef]
  9. K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997).
    [CrossRef]
  10. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007).
    [CrossRef] [PubMed]
  11. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A. 41(29), 295401 (2008).
    [CrossRef]
  12. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
    [CrossRef]
  13. S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).
    [CrossRef]
  14. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
    [CrossRef] [PubMed]
  15. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
    [CrossRef]
  16. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
    [CrossRef]
  17. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
    [CrossRef] [PubMed]
  18. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
    [CrossRef]
  19. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
    [CrossRef] [PubMed]
  20. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
    [CrossRef] [PubMed]
  21. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
    [CrossRef] [PubMed]
  22. M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
    [CrossRef]
  23. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2(9), 1538–1540 (1985).
    [CrossRef]
  24. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
    [CrossRef]
  25. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [CrossRef]
  26. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
    [CrossRef] [PubMed]
  27. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [CrossRef]
  28. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  29. T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
    [CrossRef]
  30. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  31. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
    [CrossRef] [PubMed]
  32. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
    [CrossRef]
  33. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
    [CrossRef]
  34. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
    [CrossRef]
  35. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [CrossRef] [PubMed]
  36. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
    [CrossRef]
  37. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
    [CrossRef] [PubMed]
  38. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
    [CrossRef] [PubMed]
  39. D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
    [CrossRef] [PubMed]
  40. K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A. 42(18), 185401 (2009).
    [CrossRef]
  41. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
    [CrossRef]
  42. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
    [CrossRef] [PubMed]
  43. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  44. D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
    [CrossRef]
  45. D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
    [CrossRef] [PubMed]
  46. Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

2012 (1)

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

2011 (7)

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
[CrossRef] [PubMed]

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

2010 (4)

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

2009 (6)

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[CrossRef]

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A. 42(18), 185401 (2009).
[CrossRef]

2008 (4)

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[CrossRef]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
[CrossRef] [PubMed]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A. 41(29), 295401 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

2007 (8)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
[CrossRef]

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[CrossRef]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

2006 (2)

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
[CrossRef] [PubMed]

2005 (4)

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

2003 (2)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

2000 (1)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

1997 (2)

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

1989 (1)

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

1985 (1)

1873 (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Alonso-Gonza’lez, P.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

Arbel, D.

Arzubiaga, L.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

Atkin, J. M.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Aubry, A.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

Bartal, G.

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Berweger, S.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Bharadwaj, P.

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

Casanova, F.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

Chang, D. E.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

Choi, H.

Chuvilin, A.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Della Valle, G.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[CrossRef]

Deutsch, B.

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Durach, M.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

Ebbsen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Fischer, U. C.

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Ginzburg, P.

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[CrossRef]

Guckenberger, R.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

Hueso, L. E.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

Issa, N. A.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[CrossRef]

Jung, J.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Kuipers, L. K.

Kurihara, K.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A. 42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A. 41(29), 295401 (2008).
[CrossRef]

Lei, D. Y.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Lukin, M. D.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

Luo, Y.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
[CrossRef] [PubMed]

Maier, S. A.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Martín-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Nam, S.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Nelson, K.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Nerkararyan, K. V.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997).
[CrossRef]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Olmon, R. L.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Orenstein, M.

Otomo, A.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A. 42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A. 41(29), 295401 (2008).
[CrossRef]

Park, H.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Pile, D. F. P.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Polman, A.

Pors, A.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Raschke, M. B.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Takahara, J.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A. 42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A. 41(29), 295401 (2008).
[CrossRef]

Tan, S. J.

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).
[CrossRef]

Thompson, J. D.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Verhagen, E.

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
[CrossRef]

Vogel, M. W.

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Vuletic, V.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

Wessel, J.

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Xu, X. G.

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

Yamamoto, K.

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A. 42(18), 185401 (2009).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A. 41(29), 295401 (2008).
[CrossRef]

Zhang, X.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

Zibrov, A. S.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

Zoller, P.

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

ACS Nano (2)

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[CrossRef] [PubMed]

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano 5(1), 597–607 (2011).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[CrossRef]

J. Appl. Phys. (6)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Efficiency and optimization of plasmon energy coupling into nano-focusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. A. (2)

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasiseparation of variables,” J. Phys. A. 41(29), 295401 (2008).
[CrossRef]

K. Kurihara, J. Takahara, K. Yamamoto, and A. Otomo, “Identifying plasmonic modes in a circular paraboloidal geometry by quasi-separation of variables,” J. Phys. A. 42(18), 185401 (2009).
[CrossRef]

Nano Lett. (6)

S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” Nano Lett. 10(1), 291–295 (2010).
[CrossRef] [PubMed]

Nat. Photonics (3)

M. Schnell, P. Alonso-Gonza’lez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

New J. Phys. (1)

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Lett. A (4)

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997).
[CrossRef]

D. K. Gramotnev and M. W. Vogel, “Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing,” Phys. Lett. A 375(39), 3464–3468 (2011).
[CrossRef]

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
[CrossRef]

Phys. Rev. B (5)

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72(15), 153401 (2005).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

Phys. Rev. Lett. (6)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

D. E. Chang, J. D. Thompson, H. Park, V. Vuletić, A. S. Zibrov, P. Zoller, and M. D. Lukin, “Trapping and manipulation of isolated atoms using nanoscale plasmonic structures,” Phys. Rev. Lett. 103(12), 123004 (2009).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Plasmonics (1)

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[CrossRef]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Other (1)

Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A schematic of the near-field optical probe combining the advantages of the diffraction-limited focusing by a spherical surface and plasmon nanofocusing by a tapered metal film; qi and qo are the propagation constants of inner and outer plasmons used to excite the tip. The probe is surrounded by air or vacuum. The considered parameters: vacuum wavelength λvac = 632.8 nm, ε1 = 2.25 (glass), R1 = 500 nm, R2 = 700 nm, t0 = 200 nm, tmin = 5 nm (at the tip of the hemisphere), ε2 = – 8.86 + 1.1i (gold [46]). (b,c) Typical distributions of the magnetic field Hφ in the probe for the inner (b) and outer (c) plasmon excitation at z = – 1.5 μm. (d,e) Typical distributions of the electric field components Er (d) and Ez (e) near the tip of the hemisphere for the inner plasmon excitation.

Fig. 2
Fig. 2

(a-c) Normalized dependencies of the electric field intensity |(E)|2 on r in the plane z = 1 nm (i.e. 1 nm above the tip of the hemisphere – Fig. 1(a)) for the inner plasmon (solid curves) and outer plasmon (dashed curves) excitation of the probe; (a) tmin = 2 nm, (b) tmin = 5 nm, and (c) tmin = 8 nm. The dotted curves correspond to the normalized electric field intensity distributions for annularly converging quasi-symmetric plasmons in uniform flat metal films on the dielectric substrate and with the thicknesses of 2 nm, 5 nm and 8 nm, respectively. The normalization is carried out with respect to the maximum intensity of the electric field in the plane z = 1 nm. (d) The dependencies of the relative electric field magnitude |(E)|/|(E)0| on r in the plane z = 1 nm for the inner plasmon excitation with tmin = 4 nm (solid curve), outer plasmon excitation with tmin = 4 nm (dashed curve), and for a uniform gold rod of 60 nm diameter, terminated by a gold hemisphere (dotted curve); (E)0 is the amplitude of the electric field in the excited plasmon at the point where the hemisphere is attached to the glass fiber (or uniform metal rod). The other parameters are the same as for Figs. 1(b)-1(e).

Fig. 3
Fig. 3

(a) The FWHM of the |(E)|2 distributions in the plane z = 1 nm versus minimum film thickness tmin for the inner and outer plasmon excitations (as indicated). The open circles correspond to the FWHM calculated only from the central maxima, and the filled circles correspond to the FWHM calculated from the overall electric field intensity distributions including the side-lobe structures (see, for example, the dashed curve in Fig. 2(b)). (b) The enhancement of the electric field intensity |(E)|2/|(E)0|2 at the tip of the structure (r = 0, z = 1 nm) versus film thickness tmin for the inner and outer plasmon excitation schemes.

Fig. 4
Fig. 4

Schematic diagrams to aid in explaining the significantly changing interference pattern of the inner plasmon excited by the outer plasmon (the dashed curves in Figs. 2(a)-(c)) when the minimum metal thickness at the tip of the hemisphere is changed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FWHM t min = FWHM t min =2nm × n eff | t min =2nm n eff | t min

Metrics