Abstract

We describe here a high sensitivity means of performing time resolved UV/Visible pump, infrared probe spectroscopy using optically Heterodyne Detected UV-IR Transient Gratings. The experiment design employed is simple, robust and includes a novel means of generating phase locked pulse pairs that relies on only mirrors and a beamsplitter. A signal to noise ratio increase of 24 compared with a conventional pump-probe arrangement is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. T. J. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56(1), 337–367 (2005).
    [CrossRef] [PubMed]
  2. J. P. Woerdman and B. Bolger, “Diffraction of light by a laser induced grating in Si,” Phys. Lett. A 30(3), 164–165 (1969).
    [CrossRef]
  3. J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of energy-transport in molecular-crystals - picosecond transient-grating method,” Phys. Rev. Lett. 41(2), 131–134 (1978).
    [CrossRef]
  4. T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
    [CrossRef]
  5. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15(6), 1791–1794 (1998).
    [CrossRef]
  6. A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23(16), 1319–1321 (1998).
    [CrossRef] [PubMed]
  7. M. J. Ammend and D. A. Blank, “Passive optical interferometer without spatial overlap between the local oscillator and signal generation,” Opt. Lett. 34(4), 548–550 (2009).
    [CrossRef] [PubMed]
  8. C. Khurmi and M. A. Berg, “Differential heterodyne detection with diffractive optics for multidimensional transient-grating spectroscopy,” J. Opt. Soc. Am. B 26(12), 2357–2362 (2009).
    [CrossRef]
  9. J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002).
    [CrossRef]
  10. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express 18(26), 27067–27078 (2010).
    [CrossRef] [PubMed]
  11. G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman-spectroscopy,” IEEE J. Quantum Electron. 14(1), 45–49 (1978).
    [CrossRef]
  12. A. Owyoung, “Coherent Raman gain spectroscopy using CW laser sources,” IEEE J. Quantum Electron. 14(3), 192–203 (1978).
    [CrossRef]
  13. J. Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134(12), 124516 (2011).
    [CrossRef] [PubMed]
  14. P. Hamm, R. A. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett. 25(24), 1798–1800 (2000).
    [CrossRef] [PubMed]
  15. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
    [CrossRef] [PubMed]
  16. J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: exploring the polarization dependence,” J. Chem. Phys. 121(12), 5943–5957 (2004).
    [CrossRef] [PubMed]
  17. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
    [CrossRef] [PubMed]
  18. L. DeFlores, “Multi-mode two-dimensional infrared spectroscopy of peptides and proteins,” in PhD Thesis (Massachusetts Institute of Technology, 2008).

2011

J. Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134(12), 124516 (2011).
[CrossRef] [PubMed]

2010

2009

2008

2005

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

E. T. J. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56(1), 337–367 (2005).
[CrossRef] [PubMed]

2004

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: exploring the polarization dependence,” J. Chem. Phys. 121(12), 5943–5957 (2004).
[CrossRef] [PubMed]

2002

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002).
[CrossRef]

2000

1998

1996

T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
[CrossRef]

1978

J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of energy-transport in molecular-crystals - picosecond transient-grating method,” Phys. Rev. Lett. 41(2), 131–134 (1978).
[CrossRef]

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman-spectroscopy,” IEEE J. Quantum Electron. 14(1), 45–49 (1978).
[CrossRef]

A. Owyoung, “Coherent Raman gain spectroscopy using CW laser sources,” IEEE J. Quantum Electron. 14(3), 192–203 (1978).
[CrossRef]

1969

J. P. Woerdman and B. Bolger, “Diffraction of light by a laser induced grating in Si,” Phys. Lett. A 30(3), 164–165 (1969).
[CrossRef]

Ammend, M. J.

Berg, M. A.

Blank, D. A.

Bloem, R.

Bolger, B.

J. P. Woerdman and B. Bolger, “Diffraction of light by a laser induced grating in Si,” Phys. Lett. A 30(3), 164–165 (1969).
[CrossRef]

Bredenbeck, J.

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: exploring the polarization dependence,” J. Chem. Phys. 121(12), 5943–5957 (2004).
[CrossRef] [PubMed]

Brixner, T.

Bruner, B. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Chugh, B.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Cowan, M. L.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Dadusc, G.

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002).
[CrossRef]

G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15(6), 1791–1794 (1998).
[CrossRef]

Dimler, F.

Dlott, D. D.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of energy-transport in molecular-crystals - picosecond transient-grating method,” Phys. Rev. Lett. 41(2), 131–134 (1978).
[CrossRef]

Donaldson, P.

Dwyer, J. R.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Eesley, G. L.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman-spectroscopy,” IEEE J. Quantum Electron. 14(1), 45–49 (1978).
[CrossRef]

Elsaesser, T.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Fayer, M. D.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of energy-transport in molecular-crystals - picosecond transient-grating method,” Phys. Rev. Lett. 41(2), 131–134 (1978).
[CrossRef]

Fidder, H.

E. T. J. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56(1), 337–367 (2005).
[CrossRef] [PubMed]

Fleming, G. R.

T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
[CrossRef]

Garrett-Roe, S.

Gieseking, B.

Goodno, G. D.

Hamm, P.

Helbing, J.

J. Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134(12), 124516 (2011).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: exploring the polarization dependence,” J. Chem. Phys. 121(12), 5943–5957 (2004).
[CrossRef] [PubMed]

Huse, N.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Jia, Y. W.

T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
[CrossRef]

Joo, T. H.

T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
[CrossRef]

Kaindl, R. A.

Khurmi, C.

Lang, M. J.

T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
[CrossRef]

Langhojer, F.

Levenson, M. D.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman-spectroscopy,” IEEE J. Quantum Electron. 14(1), 45–49 (1978).
[CrossRef]

Löhrig, T.

Maznev, A. A.

Miller, R. J. D.

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002).
[CrossRef]

G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15(6), 1791–1794 (1998).
[CrossRef]

Nelson, K. A.

Nibbering, E. T. J.

E. T. J. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56(1), 337–367 (2005).
[CrossRef] [PubMed]

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Ogilvie, J. P.

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002).
[CrossRef]

Olivucci, M.

J. Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134(12), 124516 (2011).
[CrossRef] [PubMed]

Owyoung, A.

A. Owyoung, “Coherent Raman gain spectroscopy using CW laser sources,” IEEE J. Quantum Electron. 14(3), 192–203 (1978).
[CrossRef]

Pines, E.

E. T. J. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56(1), 337–367 (2005).
[CrossRef] [PubMed]

Plazanet, M.

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002).
[CrossRef]

Réhault, J.

J. Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134(12), 124516 (2011).
[CrossRef] [PubMed]

Rogers, J. A.

Salcedo, J. R.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of energy-transport in molecular-crystals - picosecond transient-grating method,” Phys. Rev. Lett. 41(2), 131–134 (1978).
[CrossRef]

Schwarz, C.

Selig, U.

Siegman, A. E.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of energy-transport in molecular-crystals - picosecond transient-grating method,” Phys. Rev. Lett. 41(2), 131–134 (1978).
[CrossRef]

Stenger, J.

Strzalka, H.

Tolles, W. M.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman-spectroscopy,” IEEE J. Quantum Electron. 14(1), 45–49 (1978).
[CrossRef]

Woerdman, J. P.

J. P. Woerdman and B. Bolger, “Diffraction of light by a laser induced grating in Si,” Phys. Lett. A 30(3), 164–165 (1969).
[CrossRef]

Yu, J. Y.

T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
[CrossRef]

Zanirato, V.

J. Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134(12), 124516 (2011).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

E. T. J. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56(1), 337–367 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman-spectroscopy,” IEEE J. Quantum Electron. 14(1), 45–49 (1978).
[CrossRef]

A. Owyoung, “Coherent Raman gain spectroscopy using CW laser sources,” IEEE J. Quantum Electron. 14(3), 192–203 (1978).
[CrossRef]

J. Chem. Phys.

J. Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134(12), 124516 (2011).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: exploring the polarization dependence,” J. Chem. Phys. 121(12), 5943–5957 (2004).
[CrossRef] [PubMed]

T. H. Joo, Y. W. Jia, J. Y. Yu, M. J. Lang, and G. R. Fleming, “Third-order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104(16), 6089–6108 (1996).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J. P. Ogilvie, M. Plazanet, G. Dadusc, and R. J. D. Miller, “Dynamics of ligand escape in myoglobin: Q- band transient absorption and four-wave mixing studies,” J. Phys. Chem. B 106(40), 10460–10467 (2002).
[CrossRef]

Nature

M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Lett. A

J. P. Woerdman and B. Bolger, “Diffraction of light by a laser induced grating in Si,” Phys. Lett. A 30(3), 164–165 (1969).
[CrossRef]

Phys. Rev. Lett.

J. R. Salcedo, A. E. Siegman, D. D. Dlott, and M. D. Fayer, “Dynamics of energy-transport in molecular-crystals - picosecond transient-grating method,” Phys. Rev. Lett. 41(2), 131–134 (1978).
[CrossRef]

Other

L. DeFlores, “Multi-mode two-dimensional infrared spectroscopy of peptides and proteins,” in PhD Thesis (Massachusetts Institute of Technology, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The optical layout of the OHD-UV-IR TG experiment.

Fig. 2
Fig. 2

A simple scheme for generating phase locked pulse pairs. (a) Side view of the optics used. (b) Top view. (c) Multiple reflections from the pulse pair generator, observed by removing the masks and introducing a vertical tilt on mirror (2). The pulse pair indicated by the black arrows is used in OHD-TG measurements: it is phase locked and contains 25% of the incident light. The weaker (and later) pulse pairs lying symmetrically about the vertical axis (red line) are also temporally synchronized. The very faint spots are reflections from the front surface of the beamsplitter. (d) Fringes generated using the pulse pairs via 400 nm light focused at the sample position (see Fig. 1) and imaged with a microscope objective.

Fig. 3
Fig. 3

Increasing the efficiency of the phase locked pulse pair generation scheme. (a) shows a patterned beamsplitter designed to eliminate all unwanted reflections. The red (dark) circles indicate where the input and output beams pass through/reflect from the beamsplitter. The pink (light) circles represent the intermediate reflections involving mirror (2). In (b), a 100% efficient method based on polarizers is shown. 45° linearly polarized light is split by a polarizing beamsplitter. The reflected and transmitted portions propagate twice through a λ/4 waveplate, inverting their polarisations and giving the correct phase locked pair after a second pass over the beamsplitter.

Fig. 4
Fig. 4

Re(CO)3(dmbpy)Br transient spectra measured using the OHD-UV-IR TG experiment. (a) Homodyne TG signals measured on the two MCT arrays. (b) The absorptive (red) and dispersive (black) components of the heterodyned grating signal on a single MCT array. (c) The array 1 absorptive transient grating signal (red) compared with the pump-probe signal (solid black). The pump probe signal is magnified by x6 (dotted line) to match the transient grating signal. (d) The absorptive transient grating signal measured on both arrays, but with opposite signs. (e) The difference of signals in (d) and the use of an optical wobbler gives a 24x increase in absorptive transient grating signal (black) compared with pump-probe signal (red). (f) The absorptive transient grating signal (black) and pump-probe signal (red) from a 20 μM Re(CO)3(dmbpy)Br solution. All spectra were recorded with 1 s signal averaging.

Fig. 5
Fig. 5

(a) A depiction of the infrared beams and optics used in the OHD-UV-IR TG experiment along with the phases of the local oscillator beams. (b) A pictorial approach to understanding the relative phase changes of the ± 1 order diffraction orders (local oscillators) when translating the diffractive optic.

Fig. 6
Fig. 6

Purely absorptive difference signals. Shown in i)-iv) are experimental Re(CO)3(dmbpy)Br single array signals and difference signals for different positions of the infrared diffractive optic (different values of φDO). The single array signals go from i) purely dispersive to iv) purely absorptive, whereas the difference data is always absorptive.

Fig. 7
Fig. 7

Line burned diffractive optical elements on CaF2 used for OHD UV-IR TG spectroscopy. On the left shows a window with a range of gratings periods and depths. The zooms show a particular grating with 22 μm line spacing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I E LO 2 + E sig 2 +2 E LO E sig cos(ωΔt+δ)
Signal=Lo g 10 S array 1 + S array 2 S array 1 S array 2 +
I Array 1 | E LO 1 e i ϕ DO + E TG 1 e i ϕ TG | 2 I Array 1 | E LO 2 e i( ϕ win ϕ DO ) + E TG 2 e i ϕ TG | 2
I Array 1 I Array 2 4 E LO ( E Disp sin ϕ win 2 E Abs cos ϕ win 2 ) sin( ϕ win 2 ϕ DO + ϕ TG )

Metrics