Abstract

In this paper we demonstrate the possibility of backward radiation from a negative permittivity planar (slab) waveguide. Furthermore, we show that backward radiation can be used to achieve sub-wavelength imaging of a point source placed close to such a slab or to a periodic layered system of slabs. Finally, we demonstrate backward-radiation-based imaging in the case of realistic materials operating in the THz regime, such as polaritonic alkali-halide systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
    [CrossRef]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007).
    [CrossRef] [PubMed]
  6. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  7. C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
    [CrossRef]
  8. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
    [CrossRef] [PubMed]
  9. A. Fang, T. Koschny, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79, 245127 (2009).
    [CrossRef]
  10. K. L. Tsakmakidis and O. Hess, “Optics: watch your back,” Nature451(7174), 27 (2008).
    [CrossRef] [PubMed]
  11. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
    [CrossRef] [PubMed]
  12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  13. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  14. N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, “Effect of backward radiation of electromagnetic waves by a metamaterial waveguide structure,” JETP Lett.89(10), 500–505 (2009).
    [CrossRef]
  15. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys.92(10), 5930–5935 (2002).
    [CrossRef]
  16. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New York, 2006).
  17. A. A. Basharin, N. P. Balabukha, and V. N. Semenenko, “The radiation from a planar metamaterial waveguide,” J. Appl. Phys.107(11), 113301 (2010).
    [CrossRef]
  18. H. Liu and K. J. Webb, “Leaky wave radiation from planar anisotropic metamaterial slabs,” Phys. Rev. B81(20), 201404 (2010).
    [CrossRef]
  19. T. Tamir and F. Y. Kou, “Varieties of leaky waves and their excitation along multilayered structures,” IEEE J. Quantum Electron.22(4), 544–551 (1986).
    [CrossRef]
  20. M. Laroche, R. Carminati, and J. J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett.96(12), 123903 (2006).
    [CrossRef] [PubMed]
  21. E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express17(12), 9879–9890 (2009).
    [CrossRef] [PubMed]
  22. A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
    [CrossRef]
  23. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1990).
  24. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
    [CrossRef] [PubMed]
  25. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
    [CrossRef]
  26. Y. N. Kuznetsov and D. I. Sementsov, “Interference of copropagating and counterpropagating surface waves,” Opt. Spectrosc.97(4), 614–616 (2004).
    [CrossRef]
  27. S. A. Afanas’ev and D. I. Sementsov, “Energy fluxes during the interference of electromagnetic waves,” Sov. Phys. Usp.51(4), 355–361 (2008).
    [CrossRef]
  28. W. Neil, Ashcroft and N. David Mermin, Solid State Physic (Holt, Rinehart and Winston, 1976).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., Orlando, 1985).
  30. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter13(9), 1811–1818 (2001).
    [CrossRef]
  31. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
    [CrossRef]
  32. A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).
  33. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).
  34. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
    [CrossRef]
  35. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express14(23), 11184–11193 (2006).
    [CrossRef] [PubMed]

2012

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

2011

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

2010

A. A. Basharin, N. P. Balabukha, and V. N. Semenenko, “The radiation from a planar metamaterial waveguide,” J. Appl. Phys.107(11), 113301 (2010).
[CrossRef]

H. Liu and K. J. Webb, “Leaky wave radiation from planar anisotropic metamaterial slabs,” Phys. Rev. B81(20), 201404 (2010).
[CrossRef]

2009

N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, “Effect of backward radiation of electromagnetic waves by a metamaterial waveguide structure,” JETP Lett.89(10), 500–505 (2009).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79, 245127 (2009).
[CrossRef]

E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express17(12), 9879–9890 (2009).
[CrossRef] [PubMed]

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

2008

S. A. Afanas’ev and D. I. Sementsov, “Energy fluxes during the interference of electromagnetic waves,” Sov. Phys. Usp.51(4), 355–361 (2008).
[CrossRef]

K. L. Tsakmakidis and O. Hess, “Optics: watch your back,” Nature451(7174), 27 (2008).
[CrossRef] [PubMed]

2007

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

M. Laroche, R. Carminati, and J. J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett.96(12), 123903 (2006).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express14(23), 11184–11193 (2006).
[CrossRef] [PubMed]

2004

Y. N. Kuznetsov and D. I. Sementsov, “Interference of copropagating and counterpropagating surface waves,” Opt. Spectrosc.97(4), 614–616 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2003

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

2002

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys.92(10), 5930–5935 (2002).
[CrossRef]

2001

C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
[CrossRef]

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter13(9), 1811–1818 (2001).
[CrossRef]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

1991

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

1986

T. Tamir and F. Y. Kou, “Varieties of leaky waves and their excitation along multilayered structures,” IEEE J. Quantum Electron.22(4), 544–551 (1986).
[CrossRef]

1969

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Acosta, M. F.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Afanas’ev, S. A.

S. A. Afanas’ev and D. I. Sementsov, “Energy fluxes during the interference of electromagnetic waves,” Sov. Phys. Usp.51(4), 355–361 (2008).
[CrossRef]

Alekseyev, L. V.

Balabukha, N. P.

A. A. Basharin, N. P. Balabukha, and V. N. Semenenko, “The radiation from a planar metamaterial waveguide,” J. Appl. Phys.107(11), 113301 (2010).
[CrossRef]

N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, “Effect of backward radiation of electromagnetic waves by a metamaterial waveguide structure,” JETP Lett.89(10), 500–505 (2009).
[CrossRef]

Bartolomé, J. F.

C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
[CrossRef]

Basharin, A. A.

A. A. Basharin, N. P. Balabukha, and V. N. Semenenko, “The radiation from a planar metamaterial waveguide,” J. Appl. Phys.107(11), 113301 (2010).
[CrossRef]

N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, “Effect of backward radiation of electromagnetic waves by a metamaterial waveguide structure,” JETP Lett.89(10), 500–505 (2009).
[CrossRef]

Caglayan, H.

Cakmak, A. O.

Capolino, F.

E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express17(12), 9879–9890 (2009).
[CrossRef] [PubMed]

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

Carminati, R.

M. Laroche, R. Carminati, and J. J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett.96(12), 123903 (2006).
[CrossRef] [PubMed]

Colak, E.

de Abajo, J. G.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

DellaVilla, A.

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

Economou, E. N

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Economou, E. N.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys.92(10), 5930–5935 (2002).
[CrossRef]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Enoch, S.

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

Esteban-Bategon, F.

C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
[CrossRef]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79, 245127 (2009).
[CrossRef]

Foteinopoulou, S.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

Galdi, V.

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

Genanakis, G.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys.92(10), 5930–5935 (2002).
[CrossRef]

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Greffet, J. J.

M. Laroche, R. Carminati, and J. J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett.96(12), 123903 (2006).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis and O. Hess, “Optics: watch your back,” Nature451(7174), 27 (2008).
[CrossRef] [PubMed]

Kafesaki, M.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

Katsarakis, N.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79, 245127 (2009).
[CrossRef]

Kou, F. Y.

T. Tamir and F. Y. Kou, “Varieties of leaky waves and their excitation along multilayered structures,” IEEE J. Quantum Electron.22(4), 544–551 (1986).
[CrossRef]

Kurylev, Y.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Kuznetsov, Y. N.

Y. N. Kuznetsov and D. I. Sementsov, “Interference of copropagating and counterpropagating surface waves,” Opt. Spectrosc.97(4), 614–616 (2004).
[CrossRef]

Laroche, M.

M. Laroche, R. Carminati, and J. J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett.96(12), 123903 (2006).
[CrossRef] [PubMed]

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Liu, H.

H. Liu and K. J. Webb, “Leaky wave radiation from planar anisotropic metamaterial slabs,” Phys. Rev. B81(20), 201404 (2010).
[CrossRef]

López-Esteban, S.

C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
[CrossRef]

Mavidis, Ch.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Merino, R. I.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Micco, A.

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

Moya, J. S.

C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
[CrossRef]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Narimanov, E.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Orera, V. M.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Ozbay, E.

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pecharroman, C.

C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
[CrossRef]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Pierro, V.

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

Reyes-Coronado, A.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter13(9), 1811–1818 (2001).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Semenenko, V. N.

A. A. Basharin, N. P. Balabukha, and V. N. Semenenko, “The radiation from a planar metamaterial waveguide,” J. Appl. Phys.107(11), 113301 (2010).
[CrossRef]

N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, “Effect of backward radiation of electromagnetic waves by a metamaterial waveguide structure,” JETP Lett.89(10), 500–505 (2009).
[CrossRef]

Sementsov, D. I.

S. A. Afanas’ev and D. I. Sementsov, “Energy fluxes during the interference of electromagnetic waves,” Sov. Phys. Usp.51(4), 355–361 (2008).
[CrossRef]

Y. N. Kuznetsov and D. I. Sementsov, “Interference of copropagating and counterpropagating surface waves,” Opt. Spectrosc.97(4), 614–616 (2004).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79, 245127 (2009).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

Tamir, T.

T. Tamir and F. Y. Kou, “Varieties of leaky waves and their excitation along multilayered structures,” IEEE J. Quantum Electron.22(4), 544–551 (1986).
[CrossRef]

Tayeb, G.

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

Tsakmakidis, K. L.

K. L. Tsakmakidis and O. Hess, “Optics: watch your back,” Nature451(7174), 27 (2008).
[CrossRef] [PubMed]

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Villa, A. D.

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Webb, K. J.

H. Liu and K. J. Webb, “Leaky wave radiation from planar anisotropic metamaterial slabs,” Phys. Rev. B81(20), 201404 (2010).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

C. Pecharroman, F. Esteban-Bategon, J. F. Bartolomé, S. López-Esteban, and J. S. Moya, “New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ϵr ≈ 80000),” Adv. Mater. (Deerfield Beach Fla.)13(20), 1541–1544 (2001).
[CrossRef]

IEEE J. Quantum Electron.

T. Tamir and F. Y. Kou, “Varieties of leaky waves and their excitation along multilayered structures,” IEEE J. Quantum Electron.22(4), 544–551 (1986).
[CrossRef]

J. Appl. Phys.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys.92(10), 5930–5935 (2002).
[CrossRef]

A. A. Basharin, N. P. Balabukha, and V. N. Semenenko, “The radiation from a planar metamaterial waveguide,” J. Appl. Phys.107(11), 113301 (2010).
[CrossRef]

J. Mod. Opt.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419–1430 (2003).

J. Phys. Condens. Matter

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter13(9), 1811–1818 (2001).
[CrossRef]

JETP Lett.

N. P. Balabukha, A. A. Basharin, and V. N. Semenenko, “Effect of backward radiation of electromagnetic waves by a metamaterial waveguide structure,” JETP Lett.89(10), 500–505 (2009).
[CrossRef]

Nat. Photonics

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Nature

K. L. Tsakmakidis and O. Hess, “Optics: watch your back,” Nature451(7174), 27 (2008).
[CrossRef] [PubMed]

Opt. Express

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. G. de Abajo, E. N Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” submitted toOpt. Express (2012).

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express14(23), 11184–11193 (2006).
[CrossRef] [PubMed]

E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express17(12), 9879–9890 (2009).
[CrossRef] [PubMed]

Opt. Spectrosc.

Y. N. Kuznetsov and D. I. Sementsov, “Interference of copropagating and counterpropagating surface waves,” Opt. Spectrosc.97(4), 614–616 (2004).
[CrossRef]

Phys. Rev.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

A. Micco, V. Galdi, F. Capolino, A. DellaVilla, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B79(7), 075110 (2009).
[CrossRef]

H. Liu and K. J. Webb, “Leaky wave radiation from planar anisotropic metamaterial slabs,” Phys. Rev. B81(20), 201404 (2010).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79, 245127 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. Laroche, R. Carminati, and J. J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett.96(12), 123903 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett.99(18), 183901 (2007).
[CrossRef] [PubMed]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

S. A. Afanas’ev and D. I. Sementsov, “Energy fluxes during the interference of electromagnetic waves,” Sov. Phys. Usp.51(4), 355–361 (2008).
[CrossRef]

Other

W. Neil, Ashcroft and N. David Mermin, Solid State Physic (Holt, Rinehart and Winston, 1976).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., Orlando, 1985).

M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1990).

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The waveguide configuration studied here. The thickness of the guide is d = 2a. The y-direction extends to ± ∞ .

Fig. 2
Fig. 2

Dispersion characteristics, Re(h) and Im(h) vs k0, of the single-layer waveguide with: (a) ε1 = –0.5; (b) ε1 = −2; and (c) ε1 = −15. In all cases ε2 = 1. The forward and backward waves are shown by the dashed and solid lines, respectively. Note that instead of Re(h), Im(h) and k0 the dimensionless quantities Re(h/k0), Im(h/k0) and k0d, respectively, are plotted (d = 2a is the waveguide thickness – see Fig. 1).

Fig. 3
Fig. 3

The dependence of the normalized total power flux P (excited by a TM point source) on the relative permittivity ε1, of a waveguide of k0d = 0.35, in air. k0 is the free-space wavenumber and d the thickness of the waveguide. The inserts show the distribution of the field Hy in the waveguide and the surrounding space for waveguide permittivity ε1 = −5 (a) and ε1 = −15 (b), if a TM point source is placed at the entrance of the waveguide.

Fig. 4
Fig. 4

Dispersion characteristics of a LiF waveguide of thickness d = 2 μm embedded in vacuum (ε2 = 1) (panels (a) and (b)), and in NaCl (panels (c) and (d)). In panels (a) and (c) the materials have been considered as lossless (Im(ε) = 0), while in (b) and (d) the losses in the materials have been also taken into account. The forward and backward waves are shown by the dashed and solid lines, respectively. Family of complex waves are marked 2. The dotted line separates the positive flux regime from the negative one.

Fig. 5
Fig. 5

Hy field distribution in a LiF slab of thickness d = 2 μm embedded in NaCl at frequencies 13 THz (a) and 15 THz (b). The source is a TM point source located 1 μm away from the LiF-NaCl interface. Scheme of the focusing mechanism (c).

Fig. 6
Fig. 6

The Hy field distribution in a layered system of LiF and NaCl layers (of thickness 2 μm each) excited by a TM-point source at frequency 14 THz (~21.5 μm). The total thickness of the lens is 24 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Π z e =Asin( k 1 x)exp(ihz) for | x |<a Π z e =Cexp( k 2 | x |)exp(ihz) for | x |>a ,
E x = x ( Π z e z ) E z = k 0 2 εμ Π z e + z ( Π z e z ) , H y =i k 0 ε Π z e x
S z = 1 2 Re( E x H y * ) ,
P z = 1 2 Re( E x H y * ) dx .
k 2 a= k 1 a ε 2 ε 1 tan( k 1 a) ,
k 1 = k 0 2 ε 1 μ 1 h 2 k 2 = h 2 k 0 2 ε 2 μ 2 ,
( k 1 a) 2 + ( k 2 a) 2 = ( k 0 a) 2 ( ε 1 μ 1 ε 2 μ 2 ) .
ε= ε ( ε 0 ε ) ω T 2 ω 2 ω T 2 +iωγ .

Metrics