Abstract

Cavity optoelectromechanical regenerative amplification is demonstrated. An optical cavity enhances mechanical transduction, allowing sensitive measurement even for heavy oscillators. A 27.3 MHz mechanical mode of a microtoroid was linewidth narrowed to 6.6 ± 1.4 mHz, 30 times smaller than previously achieved with radiation pressure driving in such a system. These results may have applications in areas such as ultrasensitive optomechanical mass spectroscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
    [CrossRef] [PubMed]
  2. A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
    [CrossRef]
  3. F. G. Major, The Quantum Beat: Principles and Applications of Atomic Clocks (Springer, 1998).
  4. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
    [CrossRef] [PubMed]
  5. Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
    [CrossRef] [PubMed]
  6. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
    [CrossRef] [PubMed]
  7. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
    [CrossRef]
  8. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
    [CrossRef]
  9. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
    [CrossRef]
  10. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
    [CrossRef]
  11. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
    [CrossRef]
  12. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).
  13. M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
    [CrossRef]
  14. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
    [CrossRef] [PubMed]
  15. L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
    [CrossRef] [PubMed]
  16. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
    [CrossRef] [PubMed]
  17. A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
    [CrossRef]
  18. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
    [CrossRef] [PubMed]
  19. T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
    [CrossRef]
  20. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19, 9020–9026 (2011).
    [CrossRef] [PubMed]
  21. W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
    [CrossRef]
  22. D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
    [CrossRef] [PubMed]
  23. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
    [CrossRef]
  24. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
    [CrossRef] [PubMed]
  25. S. Sridaran and S. A. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2011), pp. 2920–2923.
    [CrossRef]
  26. X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
    [CrossRef] [PubMed]
  27. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
    [CrossRef] [PubMed]
  28. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
    [CrossRef]
  29. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [CrossRef] [PubMed]
  30. H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
    [CrossRef]
  31. W. A. Edson, “Noise in oscillators,” Proc. IRE 48, 1454–1466 (1960).
    [CrossRef]
  32. W. P. Robins, Phase Noise in Signal Sources (Peter Peregrinus Ltd, 1982), pp. 48–53.
  33. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1995).
    [CrossRef]
  34. J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
    [CrossRef]
  35. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  36. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
    [CrossRef]
  37. C. Junge, S. Nickel, D. O’Shea, and A. Rauschenbeutel, “Bottle microresonator with actively stabilized evanescent coupling,” Opt. Lett. 36, 3488–3490 (2011).
    [CrossRef] [PubMed]
  38. K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
    [CrossRef]
  39. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
  40. J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
    [CrossRef] [PubMed]
  41. J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
    [CrossRef]

2011 (5)

2010 (6)

J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[CrossRef] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[CrossRef]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[CrossRef] [PubMed]

T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

2009 (4)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[CrossRef] [PubMed]

M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[CrossRef]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef] [PubMed]

2008 (4)

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[CrossRef]

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[CrossRef] [PubMed]

2007 (2)

L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[CrossRef] [PubMed]

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

2006 (3)

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[CrossRef]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[CrossRef]

H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[CrossRef]

2005 (2)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

2004 (2)

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[CrossRef] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

2003 (1)

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

2002 (1)

W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[CrossRef]

1999 (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

1998 (1)

A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[CrossRef]

1995 (1)

1991 (1)

D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[CrossRef] [PubMed]

1960 (1)

W. A. Edson, “Noise in oscillators,” Proc. IRE 48, 1454–1466 (1960).
[CrossRef]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

1955 (1)

J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[CrossRef]

Abadal, G.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Abidi, A. A.

A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[CrossRef]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[CrossRef]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[CrossRef]

Arndt, M.

M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[CrossRef]

Aspelmeyer, M.

M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[CrossRef]

Barniol, N.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Baskaran, R.

W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[CrossRef]

Bhave, S. A.

Bouwmeester, D.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Bowen, W. P.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[CrossRef] [PubMed]

T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[CrossRef]

Budakian, R.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[CrossRef] [PubMed]

Burg, T. P.

J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[CrossRef] [PubMed]

Callegari, C.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[CrossRef] [PubMed]

Camacho, R.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Carmon, T.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[CrossRef] [PubMed]

Chang, D.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Chui, B. W.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[CrossRef] [PubMed]

Cleland, A.

A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[CrossRef]

Donner, T.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[CrossRef] [PubMed]

Edson, W. A.

W. A. Edson, “Noise in oscillators,” Proc. IRE 48, 1454–1466 (1960).
[CrossRef]

Eichenfield, M.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Ekinci, K. L.

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

Esteve, J.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Feng, X. L.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[CrossRef] [PubMed]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef] [PubMed]

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

Fraxedas, J.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).

Gordon, J. P.

J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[CrossRef]

Grutter, P.

D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[CrossRef] [PubMed]

Hadjar, Y.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Haiberger, L.

L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[CrossRef] [PubMed]

Hajimiri, A.

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[CrossRef]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[CrossRef]

Hanay, M. S.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef] [PubMed]

Harlow, J. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[CrossRef] [PubMed]

Harris, G. I.

T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[CrossRef]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[CrossRef] [PubMed]

Heidmann, A.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Hiebert, W. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef] [PubMed]

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[CrossRef]

H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[CrossRef]

Jensen, K.

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[CrossRef] [PubMed]

Junge, C.

Keller, U.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[CrossRef]

Kim, K.

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[CrossRef]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).

Knittel, J.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[CrossRef] [PubMed]

T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[CrossRef]

Lee, J.

J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[CrossRef] [PubMed]

Lee, K. H.

T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[CrossRef]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[CrossRef] [PubMed]

Lehnert, K. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[CrossRef] [PubMed]

Lin, Q.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Major, F. G.

F. G. Major, The Quantum Beat: Principles and Applications of Atomic Clocks (Springer, 1998).

Maleki, L.

Mamin, H. J.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[CrossRef] [PubMed]

Manalis, S. R.

J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[CrossRef] [PubMed]

Marshall, W.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

McRae, T. G.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[CrossRef] [PubMed]

T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[CrossRef]

Mirzaei, A.

A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[CrossRef]

Naik, A. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef] [PubMed]

Nickel, S.

O’Shea, D.

Painter, O.

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Paschotta, R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[CrossRef]

Payer, K.

J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[CrossRef] [PubMed]

Penrose, R.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Pérez-Murano, F.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Pinard, M.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Rauschenbeutel, A.

Rivière, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[CrossRef]

Robins, W. P.

W. P. Robins, Phase Noise in Signal Sources (Peter Peregrinus Ltd, 1982), pp. 48–53.

Rokhsari, H.

H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[CrossRef]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

Rosenberg, J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Roukes, M.

A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[CrossRef]

Roukes, M. L.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[CrossRef] [PubMed]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef] [PubMed]

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

Rugar, D.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[CrossRef] [PubMed]

D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[CrossRef] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

Schiller, S.

L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[CrossRef] [PubMed]

Schlatter, A.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[CrossRef]

Schliesser, A.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[CrossRef]

Shen, W.

J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[CrossRef] [PubMed]

Simon, C.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Sridaran, S.

Tallur, S.

Telle, H. R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[CrossRef]

Teufel, J. D.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[CrossRef] [PubMed]

Teva, J.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Torres, F.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[CrossRef]

Turner, K. L.

W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[CrossRef]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Uranga, A.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Vahala, K. J.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[CrossRef]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

Verd, J.

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Weingran, M.

L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[CrossRef] [PubMed]

White, C. J.

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Yang, Y. T.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[CrossRef] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

Yao, X. S.

Zeiger, H. J.

J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[CrossRef]

Zeilinger, A.

M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[CrossRef]

Zeller, S. C.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[CrossRef]

Zettl, A.

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[CrossRef]

Appl. Phys. B (1)

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[CrossRef]

J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[CrossRef]

Eur. Phys. J. D (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Fortschr. Phys. (1)

M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

IEEE Trans. Circuits Syst., I: Regul. Pap. (1)

A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[CrossRef]

J. Appl. Phys. (1)

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[CrossRef] [PubMed]

J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (4)

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[CrossRef] [PubMed]

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[CrossRef] [PubMed]

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Nat. Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Nature (2)

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[CrossRef] [PubMed]

A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[CrossRef]

New J. Phys. (2)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[CrossRef]

A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (2)

J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[CrossRef]

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Phys. Rev. A (2)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[CrossRef]

T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[CrossRef]

Phys. Rev. Lett. (5)

D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[CrossRef] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[CrossRef] [PubMed]

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Proc. IRE (1)

W. A. Edson, “Noise in oscillators,” Proc. IRE 48, 1454–1466 (1960).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[CrossRef] [PubMed]

Sens. Actuators A, Phys. (1)

W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[CrossRef]

Other (4)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).

F. G. Major, The Quantum Beat: Principles and Applications of Atomic Clocks (Springer, 1998).

W. P. Robins, Phase Noise in Signal Sources (Peter Peregrinus Ltd, 1982), pp. 48–53.

S. Sridaran and S. A. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2011), pp. 2920–2923.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic of the experiment. FPC, fiber polarization control. The Feedback Control includes filtering and control over both feedback phase and amplitude. The network analyzer was used to characterize the driven response of the system, and all other results were taken with the signal analyzer. The subplots show the motion of the mechanical mode investigated here, (a) with driving from the network analyzer, and (b) the thermal motion measured on the spectrum analyzer. Shown in light blue is a fit to the data shown in green, which determines the intrinsic decay rate Γ0 and frequency ωm. The vertical axis of each subplot is in dB against an arbitrary reference.

Fig. 2
Fig. 2

Oscillator mechanical energy as a function of small-signal feedback gain. Green trace: measured data. Below saturation the theoretical model (blue dashed line) is given by Eq. (6). To estimate the above-threshold mechanical energy, Eq. (1) is numerically solved for sinusoidal motion with a limit applied to the magnitude of the feedback force Ffb(t). Two fitting parameters are used; one normalizes the gain such that saturation occurs at G0 = 1, and another defines the mechanical energy at which saturation occurs. Inset: A finite-element model of the mechanical mode being amplified.

Fig. 3
Fig. 3

Blue and green traces respectively show the mechanical power spectrum with and without amplification. These were measured by sending the signal from the optical detector directly into a spectrum analyzer. Note that this mode is composed of two degenerate modes which are distinguished only by the azimuthal position of the nodes and antinodes. Only the mode with greatest overlap with the driving field is amplified, although both are present in the measurements. Inset: A near resonance spectrum with amplification and a 1 Hz resolution bandwidth (right).

Fig. 4
Fig. 4

(a) An example of a phase noise trace. The fitted noise floor is for a linewidth Γ = 13.3 ± 3.7 mHz. A low Q mechanical resonance at 108 Hz is clearly visible, and electronic noise from the signal analyzer also appears for frequency offsets above 1 kHz. The dotted line indicates the phase noise typically achievable with optomechanical driving only [23]. (b) The measured linewidth as a function of oscillator energy. Fitting to the data (green) shows shows a dependence of Γ E osc 0.91 ± 0.12, while theory predicts Γ E osc 1.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

m [ x ¨ ( t ) + Γ 0 x ˙ ( t ) + ω m 2 x ( t ) ] = F f b ( t ) + F opt + F T ( t ) ,
m [ x ¨ ( t ) + Γ r x ˙ ( t ) + ω r 2 x ( t ) ] = F f b ( t ) + F T ( t ) ,
x ( ω ) = F T ( ω ) m ( ω r 2 ω 2 + i Γ r ω ) i m ω m Γ r G .
x ( Δ ) = 1 m ω m F T ( ω ) 2 Δ + i Γ r ( 1 G ) .
Γ = Γ 0 ( 1 P opt P thresh ) ( 1 G ) .
E osc = 1 2 π m ω m 2 | x ( ω ) | 2 d ω = 1 2 k T ( 1 P opt P thresh ) ( 1 G ) ,
Γ = Γ 0 2 E T E osc .
10 ( Δ Ω ) / 10 = Γ Δ Ω 2 ,
δ m min = 2 m mode ( E T E osc ) 1 / 2 ( Γ 2 π Q ω m ) 1 / 2 ,

Metrics