Abstract

The internal state of organic photochromic spiropyran molecules adsorbed on optical microfibres is optically controlled and measured by state-dependent light absorption. Repeated switching between the states is achieved by exposure to the evanescent field of a few nanowatts of light guided in the microfibre. By adjusting the microfibre evanescent field strength the dynamic equilibrium state of the molecules is controlled. Time-resolved photoswitching dynamics are measured and modelled with a rate equation model. We also study how many times the photochromic system can be switched before undergoing significant photochemical degradation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
    [CrossRef] [PubMed]
  2. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, and J. S. Wilkinson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon.1, 107–161 (2009).
    [CrossRef]
  3. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12, 043001 (2010).
    [CrossRef]
  4. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of sub-micrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express18, 7693–7704 (2010).
    [CrossRef] [PubMed]
  5. L. Tong and M. Sumetsky, Subwavelength and nanometer diameter optical fibers (Springer, Berlin, 2010).
    [CrossRef]
  6. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express12, 2258–2263 (2004).
    [CrossRef] [PubMed]
  7. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  8. J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
    [CrossRef]
  9. F. Warken, A. Rauschenbeutel, and T. Bartholomäus, “Fiber pulling profits from precise positioning,” Photon. Spectra42, 3, 73 (2008).
  10. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12, 1025–1035 (2004).
    [CrossRef] [PubMed]
  11. R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
    [CrossRef]
  12. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express15, 11952–11958 (2007).
    [CrossRef] [PubMed]
  13. H. Dürr and H. Bouas-Laurent, Photochromism: molecules and systems (Elsevier, Amsterdam, 2003).
  14. M. Irie and K. Sayo, “Solvent effects on the photochromic reactions of diarylethene derivatives,” J. Phys. Chem.96, 7671–7674 (1992).
    [CrossRef]
  15. K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998).
    [CrossRef]
  16. L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
    [CrossRef]
  17. K. Kinashi, Y. Harada, and Y. Ueda, “Thermal stability of merocyanine form in spiropyran/silica composite film,” Thin Solid Films516, 2532–2536 (2008).
    [CrossRef]
  18. T. Yoshida, A. Morinaka, and N. Funakoshi, “Photochromism of a vacuum-deposited 1′,3′,3′-trimethyl-6-hydroxyspiro[2H-1-benzopyran-2,2′-indoline] film,” J. Chem. Soc. Chem. Commun.1986, 437–438 (1986).
    [CrossRef]
  19. R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
    [CrossRef] [PubMed]
  20. M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
    [CrossRef] [PubMed]
  21. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev.100, 1741–1754 (2000).
    [CrossRef]
  22. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev.100, 1685–1716 (2000).
    [CrossRef]
  23. J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett.24, 245–246 (1988).
    [CrossRef]
  24. K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
    [CrossRef]
  25. E. Mohn, “Kinetic characteristics of a solid photochromic film,” Appl. Opt.2, 1570–1576 (1973).
    [CrossRef]
  26. G. H. Brown, Photochromism (John Wiley & Sons, New York, 1971).
  27. V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
    [CrossRef]
  28. V. Malatesta, Organic photochromic and thermochromic compounds 2: Physicochemical studies, biological applications, and thermochromism (KluwerAcademic Press, 1999), Chap. 2.
    [PubMed]

2011

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

2010

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12, 043001 (2010).
[CrossRef]

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of sub-micrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express18, 7693–7704 (2010).
[CrossRef] [PubMed]

K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
[CrossRef]

2009

2008

F. Warken, A. Rauschenbeutel, and T. Bartholomäus, “Fiber pulling profits from precise positioning,” Photon. Spectra42, 3, 73 (2008).

L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
[CrossRef]

K. Kinashi, Y. Harada, and Y. Ueda, “Thermal stability of merocyanine form in spiropyran/silica composite film,” Thin Solid Films516, 2532–2536 (2008).
[CrossRef]

2007

2006

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

2005

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

2004

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

2000

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev.100, 1741–1754 (2000).
[CrossRef]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev.100, 1685–1716 (2000).
[CrossRef]

1998

K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998).
[CrossRef]

1994

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

1992

M. Irie and K. Sayo, “Solvent effects on the photochromic reactions of diarylethene derivatives,” J. Phys. Chem.96, 7671–7674 (1992).
[CrossRef]

1988

J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett.24, 245–246 (1988).
[CrossRef]

1986

T. Yoshida, A. Morinaka, and N. Funakoshi, “Photochromism of a vacuum-deposited 1′,3′,3′-trimethyl-6-hydroxyspiro[2H-1-benzopyran-2,2′-indoline] film,” J. Chem. Soc. Chem. Commun.1986, 437–438 (1986).
[CrossRef]

1973

E. Mohn, “Kinetic characteristics of a solid photochromic film,” Appl. Opt.2, 1570–1576 (1973).
[CrossRef]

Alt, W.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of sub-micrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express18, 7693–7704 (2010).
[CrossRef] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Ball, G. E.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Bartholomäus, T.

F. Warken, A. Rauschenbeutel, and T. Bartholomäus, “Fiber pulling profits from precise positioning,” Photon. Spectra42, 3, 73 (2008).

Berkovic, G.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev.100, 1741–1754 (2000).
[CrossRef]

Birks, T.

Biteau, J.

L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
[CrossRef]

Boilot, J.

L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
[CrossRef]

Bortolus, P.

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

Botham, C. P.

J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett.24, 245–246 (1988).
[CrossRef]

Bouas-Laurent, H.

H. Dürr and H. Bouas-Laurent, Photochromism: molecules and systems (Elsevier, Amsterdam, 2003).

Brambilla, G.

Brown, G. H.

G. H. Brown, Photochromism (John Wiley & Sons, New York, 1971).

Bruse, F.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

Chormaic, S. N.

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

Dan, C.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of sub-micrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express18, 7693–7704 (2010).
[CrossRef] [PubMed]

Davis, T. P.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Deasy, K.

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

Dürr, H.

H. Dürr and H. Bouas-Laurent, Photochromism: molecules and systems (Elsevier, Amsterdam, 2003).

Evans, R. A.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Feng, X.

Finazzi, V.

Funakoshi, N.

T. Yoshida, A. Morinaka, and N. Funakoshi, “Photochromism of a vacuum-deposited 1′,3′,3′-trimethyl-6-hydroxyspiro[2H-1-benzopyran-2,2′-indoline] film,” J. Chem. Soc. Chem. Commun.1986, 437–438 (1986).
[CrossRef]

Gacoin, T.

L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
[CrossRef]

Garcia-Fernandez, R.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Han, J. J.

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

Hanley, T. L.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Harada, Y.

K. Kinashi, Y. Harada, and Y. Ueda, “Thermal stability of merocyanine form in spiropyran/silica composite film,” Thin Solid Films516, 2532–2536 (2008).
[CrossRef]

Harper, J. S.

J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett.24, 245–246 (1988).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hornung, S.

J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett.24, 245–246 (1988).
[CrossRef]

Hurst, J. K.

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

Irie, M.

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev.100, 1685–1716 (2000).
[CrossRef]

K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998).
[CrossRef]

M. Irie and K. Sayo, “Solvent effects on the photochromic reactions of diarylethene derivatives,” J. Phys. Chem.96, 7671–7674 (1992).
[CrossRef]

Irsen, S.

Ishida, K.

K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
[CrossRef]

Jung, Y.

Karapetyan, K.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of sub-micrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express18, 7693–7704 (2010).
[CrossRef] [PubMed]

Kido, Y.

K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998).
[CrossRef]

Kinashi, K.

K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
[CrossRef]

K. Kinashi, Y. Harada, and Y. Ueda, “Thermal stability of merocyanine form in spiropyran/silica composite film,” Thin Solid Films516, 2532–2536 (2008).
[CrossRef]

Koizumi, F.

Koukharenko, E.

Krongauz, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev.100, 1741–1754 (2000).
[CrossRef]

Lanzini, L.

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

Leon-Saval, S.

Lewis, D. A.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Li, A. D. Q.

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12, 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Malatesta, V.

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

V. Malatesta, Organic photochromic and thermochromic compounds 2: Physicochemical studies, biological applications, and thermochromism (KluwerAcademic Press, 1999), Chap. 2.
[PubMed]

Mason, M.

Matheron, M.

L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12, 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Meschede, D.

Millini, R.

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

Milosa, M.

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

Mohn, E.

E. Mohn, “Kinetic characteristics of a solid photochromic film,” Appl. Opt.2, 1570–1576 (1973).
[CrossRef]

Monti, S.

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

Morinaka, A.

T. Yoshida, A. Morinaka, and N. Funakoshi, “Photochromism of a vacuum-deposited 1′,3′,3′-trimethyl-6-hydroxyspiro[2H-1-benzopyran-2,2′-indoline] film,” J. Chem. Soc. Chem. Commun.1986, 437–438 (1986).
[CrossRef]

Morrissey, M. J.

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

Murugan, G. S.

Nakamura, S.

K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
[CrossRef]

O’Shea, D.

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

Ono, Y.

K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
[CrossRef]

Pritzkau, D.

Raboin, L.

L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
[CrossRef]

Rauschenbeutel, A.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

F. Warken, A. Rauschenbeutel, and T. Bartholomäus, “Fiber pulling profits from precise positioning,” Photon. Spectra42, 3, 73 (2008).

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express15, 11952–11958 (2007).
[CrossRef] [PubMed]

Rehband, O.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

Richardson, D. J.

Russell, P. St. J.

Sayo, K.

M. Irie and K. Sayo, “Solvent effects on the photochromic reactions of diarylethene derivatives,” J. Phys. Chem.96, 7671–7674 (1992).
[CrossRef]

Sessions, N. P.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Shortt, B. J.

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

Skidmore, M. A.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Sokolowski, M.

Stiebeiner, A.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

Such, G. K.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Sumetsky, M.

L. Tong and M. Sumetsky, Subwavelength and nanometer diameter optical fibers (Springer, Berlin, 2010).
[CrossRef]

Tong, L.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12, 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

L. Tong and M. Sumetsky, Subwavelength and nanometer diameter optical fibers (Springer, Berlin, 2010).
[CrossRef]

Uchida, K.

K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998).
[CrossRef]

Ueda, Y.

K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
[CrossRef]

K. Kinashi, Y. Harada, and Y. Ueda, “Thermal stability of merocyanine form in spiropyran/silica composite film,” Thin Solid Films516, 2532–2536 (2008).
[CrossRef]

Vetsch, E.

Wadsworth, W.

Ward, J.

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

Warken, F.

Weiss, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev.100, 1741–1754 (2000).
[CrossRef]

Wiedemann, U.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of sub-micrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express18, 7693–7704 (2010).
[CrossRef] [PubMed]

Wilkinson, J. S.

Wu, W.

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

Xu, F.

Yamaguchi, T.

K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998).
[CrossRef]

Yee, L. H.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Yoshida, T.

T. Yoshida, A. Morinaka, and N. Funakoshi, “Photochromism of a vacuum-deposited 1′,3′,3′-trimethyl-6-hydroxyspiro[2H-1-benzopyran-2,2′-indoline] film,” J. Chem. Soc. Chem. Commun.1986, 437–438 (1986).
[CrossRef]

Zhu, L.

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

Zhu, M. Q.

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Opt.

E. Mohn, “Kinetic characteristics of a solid photochromic film,” Appl. Opt.2, 1570–1576 (1973).
[CrossRef]

Appl. Phys. B

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B105, 3–15 (2011).
[CrossRef]

B. Chem. Soc. Jpn.

K. Uchida, Y. Kido, T. Yamaguchi, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 2-(1-Benzothiophen-3-yl)-3-(2 or 3-thienyl)maleimide derivatives,” B. Chem. Soc. Jpn.71, 1101–1108 (1998).
[CrossRef]

Chem. Rev.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev.100, 1741–1754 (2000).
[CrossRef]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev.100, 1685–1716 (2000).
[CrossRef]

Electron. Lett.

J. S. Harper, C. P. Botham, and S. Hornung, “Tapers in single-mode optical fibre by controlled core diffusion,” Electron. Lett.24, 245–246 (1988).
[CrossRef]

J. Am. Chem. Soc.

M. Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, and A. D. Q. Li, “Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence,” J. Am. Chem. Soc.128, 4303–4309 (2006).
[CrossRef] [PubMed]

J. Chem. Soc. Chem. Commun.

T. Yoshida, A. Morinaka, and N. Funakoshi, “Photochromism of a vacuum-deposited 1′,3′,3′-trimethyl-6-hydroxyspiro[2H-1-benzopyran-2,2′-indoline] film,” J. Chem. Soc. Chem. Commun.1986, 437–438 (1986).
[CrossRef]

J. Mater. Chem.

L. Raboin, M. Matheron, J. Biteau, T. Gacoin, and J. Boilot, “Photochromism of spirooxazines in mesoporous organosilica films,” J. Mater. Chem.18, 3242–3248 (2008).
[CrossRef]

J. Opt.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12, 043001 (2010).
[CrossRef]

J. Photochem. Photobiol. A

K. Kinashi, S. Nakamura, Y. Ono, K. Ishida, and Y. Ueda, “Reverse photochromism of spiropyran in silica,” J. Photochem. Photobiol. A213, 136–140 (2010).
[CrossRef]

J. Phys. Chem.

M. Irie and K. Sayo, “Solvent effects on the photochromic reactions of diarylethene derivatives,” J. Phys. Chem.96, 7671–7674 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst.

V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S. Monti, “Oxidative-degradation of organic photochromes,” Mol. Cryst. Liq. Cryst.246, 303–310 (1994).
[CrossRef]

Nat. Mater.

R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, “The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix,” Nat. Mater.4, 249–253 (2005).
[CrossRef] [PubMed]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Photon. Spectra

F. Warken, A. Rauschenbeutel, and T. Bartholomäus, “Fiber pulling profits from precise positioning,” Photon. Spectra42, 3, 73 (2008).

Rev. Sci. Instrum.

J. Ward, D. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum.77, 083105 (2006).
[CrossRef]

Thin Solid Films

K. Kinashi, Y. Harada, and Y. Ueda, “Thermal stability of merocyanine form in spiropyran/silica composite film,” Thin Solid Films516, 2532–2536 (2008).
[CrossRef]

Other

H. Dürr and H. Bouas-Laurent, Photochromism: molecules and systems (Elsevier, Amsterdam, 2003).

V. Malatesta, Organic photochromic and thermochromic compounds 2: Physicochemical studies, biological applications, and thermochromism (KluwerAcademic Press, 1999), Chap. 2.
[PubMed]

G. H. Brown, Photochromism (John Wiley & Sons, New York, 1971).

L. Tong and M. Sumetsky, Subwavelength and nanometer diameter optical fibers (Springer, Berlin, 2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup of the absorption spectroscopy and photoswitching experiment.

Fig. 2
Fig. 2

(a) Absorbance spectra of spiroOH with continuous observation using 10 nW of white light and additional UV-light exposure (1.5 nW) starting in the time interval from 0 s to 0.25 s. With all molecules initially in the transparent state (blue curve), the absorbance increases by UV light up to a stable absorbance in the photostationary state (red curve). (b) Starting from the photostationary spectrum (red curve, t = 1.25 s) the absorbance decreases after the UV exposure has stopped. All curves obtained during UV exposure are slightly distorted due to broadband UV-induced fluorescence coming from the fibre. The integration time per spectrum is for all figures 250 ms.

Fig. 3
Fig. 3

Photoswitching dynamics of molecular absorbance (dots) for 250 ms exposure to 3 nW of UV light (solid line) and 10 nW of continuous white light. Dashed black line: zero absorbance. The graph was smoothed for visibility and the inset shows the horizontally expanded photocolouration process.

Fig. 4
Fig. 4

Absorbance of spiroOH during photobleaching with white light. The solid lines represent the fit result obtained according to the exponential (red) and bi-exponential (green) model.

Fig. 5
Fig. 5

(a) Absorbance in the photostationary state for 10 cycles with varying UV power, [1.5, 3, 4.5, 6, 7.5] nW and backwards. The exposure time of each cycle was varied inversely to the power to keep the UV energy to which the molecules are exposed in each cycle constant. Therefore in each cycle the same fraction of molecules is destroyed which allows us to discriminate between the molecule destruction and the saturation in the photostationary state (see text for details). The error bars show the statistical error and the solid lines are the fit curves according to Eq. 6 taking photodestruction (dashed line) into account. (b) Fraction of coloured molecules in the photostationary state depending on the UV-light power. The straight lines illustrate the specific UV powers used in the experiment and the corresponding fraction of coloured molecules.

Fig. 6
Fig. 6

Many subsequent switching cycles of spiroOH. Each cycle consists of 100 ms photocolouration (3 nW of UV) followed by 20 s photobleaching (10 nW of white light). The upper trace denotes the molecule absorbance, the lower trace the UV exposure, and the dashed black line zero absorbance.

Fig. 7
Fig. 7

The maximum cycle absorbance for many subsequent cycles with photocolouration due to the exposure to 3.2 nW (a) and 7 nW (b) of UV light for 100 ms.

Fig. 8
Fig. 8

Fast photocolouration and slow photodestruction of spiroOH under continuous UV exposure (3 nW) used for the determination of the respective sensitivities. The inset shows the horizontally zoomed photocolouration process.

Tables (1)

Tables Icon

Table 1 Cyclability Z50 and energy E50.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = log 10 P sig ( λ ) P ref ( λ ) N col .
d N col ( t ) d t = Φ photobleach J col ( t )
d A ( t ) d t = a Φ photobleach ( 1 10 A ( t ) ) .
d A ( t ) d t = k A ( t )
A stat = A col k photocol / k photobleach 1 + k photocol / k photobleach
A stat ( f enh ) = A col f enh k photocol , 0 / k photobleach , 0 1 + f enh k photocol , 0 / k photobleach , 0
σ tr ( UV ) Φ photocol σ col ( UV ) Φ destr , col ( d A d t ) photocol ( d A d t ) destr 500

Metrics