Abstract

Accurate optical emission spectroscopy (OES) measurements are necessary for plasma semiconductor processing and for optical emission analysis. In this paper we investigate the effects of self-absorption on the most important neutral Argon spectra lines. One of these Argon spectral lines (750 nm) is frequently used for actinometry. The experiment is performed in a reactive ion etch (RIE) capacitively coupled plasma (CCP) system. A comprehensive design of experiments has been created to establish all plasma conditions, power, pressure and gas flow rate which affect the Argon emission intensity by self-absorption. The results are then compared to theoretical calculated line ratios.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges,” J. Appl. Phys. 76(3), 1487–1493 (1994).
    [CrossRef]
  2. D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma,” J. Phys. D Appl. Phys. 39(24), 5230–5235 (2006).
    [CrossRef]
  3. J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density,” J. Appl. Phys. 51(6), 3134–3136 (1980).
    [CrossRef]
  4. R. E. Walkup, K. L. Saenger, and G. S. Selwyn, “Studies of atomic oxygen in O2 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy,” J. Chem. Phys. 84(5), 2668–2674 (1986).
    [CrossRef]
  5. H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
    [CrossRef]
  6. V. Milosavljević, R. Faulkner, and M. B. Hopkins, “Real time sensor for monitoring oxygen in radio-frequency plasma applications,” Opt. Express 15(21), 13913–13923 (2007).
    [CrossRef] [PubMed]
  7. V. Milosavljević, A. R. Ellingboe, and S. Daniels, “Influence of plasma chemistry on oxygen triplets,” Eur. Phys. J. D 64(2-3), 437–445 (2011).
    [CrossRef]
  8. N. Konjević, “Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications,” Phys. Rep. 316(6), 339–401 (1999).
    [CrossRef]
  9. R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981), Chap 1.9.
  10. A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
    [CrossRef]
  11. G. W. F. Drake, Atomic, Molecular, and Optical Physics Handbook (AIP, 1996), Chaps. 17, 18, and 21.
  12. NIST – Atomic Spectra Database Lines Data (wavelength order) 2012 – http://physics.nist.gov .
  13. V. Milosavljević and A. R. Ellingboe, “Quantum efficiency of Spectrometers,” PRL Internal Report (Dublin City University, 2004).
  14. J. Jolly and M. Touzeau, “Measurement of metastable-state densities by self-absorption technique,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 863–872 (1975).
    [CrossRef]
  15. Handbook of Chemistry and Physics, William Haynes, ed. (CRC Press, 2010).
  16. S. Djeniže, V. Milosavljević, and M. S. Dimitrijević, “Transition probabilities in Kr II and Kr III spectra,” Eur. Phys. J. D 27, 209–213 (2003).
    [CrossRef]

2011

V. Milosavljević, A. R. Ellingboe, and S. Daniels, “Influence of plasma chemistry on oxygen triplets,” Eur. Phys. J. D 64(2-3), 437–445 (2011).
[CrossRef]

2007

2006

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma,” J. Phys. D Appl. Phys. 39(24), 5230–5235 (2006).
[CrossRef]

2005

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

2003

S. Djeniže, V. Milosavljević, and M. S. Dimitrijević, “Transition probabilities in Kr II and Kr III spectra,” Eur. Phys. J. D 27, 209–213 (2003).
[CrossRef]

2000

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

1999

N. Konjević, “Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications,” Phys. Rep. 316(6), 339–401 (1999).
[CrossRef]

1994

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges,” J. Appl. Phys. 76(3), 1487–1493 (1994).
[CrossRef]

1986

R. E. Walkup, K. L. Saenger, and G. S. Selwyn, “Studies of atomic oxygen in O2 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy,” J. Chem. Phys. 84(5), 2668–2674 (1986).
[CrossRef]

1980

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density,” J. Appl. Phys. 51(6), 3134–3136 (1980).
[CrossRef]

1975

J. Jolly and M. Touzeau, “Measurement of metastable-state densities by self-absorption technique,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 863–872 (1975).
[CrossRef]

Amorim, J.

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges,” J. Appl. Phys. 76(3), 1487–1493 (1994).
[CrossRef]

Baravian, G.

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges,” J. Appl. Phys. 76(3), 1487–1493 (1994).
[CrossRef]

Chen, M.

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density,” J. Appl. Phys. 51(6), 3134–3136 (1980).
[CrossRef]

Coburn, J. W.

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density,” J. Appl. Phys. 51(6), 3134–3136 (1980).
[CrossRef]

Cristoforetti, G.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Daniels, S.

V. Milosavljević, A. R. Ellingboe, and S. Daniels, “Influence of plasma chemistry on oxygen triplets,” Eur. Phys. J. D 64(2-3), 437–445 (2011).
[CrossRef]

Dimitrijevic, M. S.

S. Djeniže, V. Milosavljević, and M. S. Dimitrijević, “Transition probabilities in Kr II and Kr III spectra,” Eur. Phys. J. D 27, 209–213 (2003).
[CrossRef]

Djeniže, S.

S. Djeniže, V. Milosavljević, and M. S. Dimitrijević, “Transition probabilities in Kr II and Kr III spectra,” Eur. Phys. J. D 27, 209–213 (2003).
[CrossRef]

Döbele, H. F.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

El Sherbini, A. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

El Sherbini, Th. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Ellingboe, A. R.

V. Milosavljević, A. R. Ellingboe, and S. Daniels, “Influence of plasma chemistry on oxygen triplets,” Eur. Phys. J. D 64(2-3), 437–445 (2011).
[CrossRef]

Faulkner, R.

Goehlich, A.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

Hegazy, H.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Hershkowitz, N.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma,” J. Phys. D Appl. Phys. 39(24), 5230–5235 (2006).
[CrossRef]

Hopkins, M. B.

Jolly, J.

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges,” J. Appl. Phys. 76(3), 1487–1493 (1994).
[CrossRef]

J. Jolly and M. Touzeau, “Measurement of metastable-state densities by self-absorption technique,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 863–872 (1975).
[CrossRef]

Katsch, H. M.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

Kawetzki, T.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

Konjevic, N.

N. Konjević, “Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications,” Phys. Rep. 316(6), 339–401 (1999).
[CrossRef]

Lee, D.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma,” J. Phys. D Appl. Phys. 39(24), 5230–5235 (2006).
[CrossRef]

Legnaioli, S.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Milosavljevic, V.

V. Milosavljević, A. R. Ellingboe, and S. Daniels, “Influence of plasma chemistry on oxygen triplets,” Eur. Phys. J. D 64(2-3), 437–445 (2011).
[CrossRef]

V. Milosavljević, R. Faulkner, and M. B. Hopkins, “Real time sensor for monitoring oxygen in radio-frequency plasma applications,” Opt. Express 15(21), 13913–13923 (2007).
[CrossRef] [PubMed]

S. Djeniže, V. Milosavljević, and M. S. Dimitrijević, “Transition probabilities in Kr II and Kr III spectra,” Eur. Phys. J. D 27, 209–213 (2003).
[CrossRef]

Oksuz, L.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma,” J. Phys. D Appl. Phys. 39(24), 5230–5235 (2006).
[CrossRef]

Palleschi, V.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Pardini, L.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Quandt, E.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

Saenger, K. L.

R. E. Walkup, K. L. Saenger, and G. S. Selwyn, “Studies of atomic oxygen in O2 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy,” J. Chem. Phys. 84(5), 2668–2674 (1986).
[CrossRef]

Salvetti, A.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Selwyn, G. S.

R. E. Walkup, K. L. Saenger, and G. S. Selwyn, “Studies of atomic oxygen in O2 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy,” J. Chem. Phys. 84(5), 2668–2674 (1986).
[CrossRef]

Severn, G.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma,” J. Phys. D Appl. Phys. 39(24), 5230–5235 (2006).
[CrossRef]

Tewes, A.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

Tognoni, E.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Touzeau, M.

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges,” J. Appl. Phys. 76(3), 1487–1493 (1994).
[CrossRef]

J. Jolly and M. Touzeau, “Measurement of metastable-state densities by self-absorption technique,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 863–872 (1975).
[CrossRef]

Walkup, R. E.

R. E. Walkup, K. L. Saenger, and G. S. Selwyn, “Studies of atomic oxygen in O2 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy,” J. Chem. Phys. 84(5), 2668–2674 (1986).
[CrossRef]

Eur. Phys. J. D

V. Milosavljević, A. R. Ellingboe, and S. Daniels, “Influence of plasma chemistry on oxygen triplets,” Eur. Phys. J. D 64(2-3), 437–445 (2011).
[CrossRef]

S. Djeniže, V. Milosavljević, and M. S. Dimitrijević, “Transition probabilities in Kr II and Kr III spectra,” Eur. Phys. J. D 27, 209–213 (2003).
[CrossRef]

J. Appl. Phys.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy,” J. Appl. Phys. 88(11), 6232–6238 (2000).
[CrossRef]

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges,” J. Appl. Phys. 76(3), 1487–1493 (1994).
[CrossRef]

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density,” J. Appl. Phys. 51(6), 3134–3136 (1980).
[CrossRef]

J. Chem. Phys.

R. E. Walkup, K. L. Saenger, and G. S. Selwyn, “Studies of atomic oxygen in O2 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy,” J. Chem. Phys. 84(5), 2668–2674 (1986).
[CrossRef]

J. Phys. D Appl. Phys.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma,” J. Phys. D Appl. Phys. 39(24), 5230–5235 (2006).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

J. Jolly and M. Touzeau, “Measurement of metastable-state densities by self-absorption technique,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 863–872 (1975).
[CrossRef]

Opt. Express

Phys. Rep.

N. Konjević, “Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications,” Phys. Rep. 316(6), 339–401 (1999).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1573–1579 (2005).
[CrossRef]

Other

G. W. F. Drake, Atomic, Molecular, and Optical Physics Handbook (AIP, 1996), Chaps. 17, 18, and 21.

NIST – Atomic Spectra Database Lines Data (wavelength order) 2012 – http://physics.nist.gov .

V. Milosavljević and A. R. Ellingboe, “Quantum efficiency of Spectrometers,” PRL Internal Report (Dublin City University, 2004).

Handbook of Chemistry and Physics, William Haynes, ed. (CRC Press, 2010).

R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981), Chap 1.9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Resolved Argon peaks, 800 and 801 nm (a), 750 and 751 nm (b).

Fig. 3
Fig. 3

Quantum Efficiency of spectrometer for 630 nm blazed grating with error bars.

Fig. 4
Fig. 4

Results for 750/826 intensity ratios. Power in watts, pressure in mTorr and flow rate in sccm. The 750/826 ratio being for strongest intensity vs. weakest one.

Fig. 11
Fig. 11

Results for 794/852 intensity ratio. Power in watts, pressure in mTorr and flow rate in sccm. The 794/852 ratio being for metastable vs. weakest intensity.

Fig. 6
Fig. 6

Results for 801/842 intensity ratio. Power in watts, pressure in mTorr and flow rate in sccm. The 801/842 ratio being for metastable vs. weakest intensity.

Fig. 7
Fig. 7

Results for 763/738 intensity ratio. Power in watts, pressure in mTorr and flow rate in sccm. The 763/738 ratio being for strongest intensity vs. weakest one.

Fig. 8
Fig. 8

Results for 706/738 intensity ratio. Power in watts, pressure in mTorr and flow rate in sccm. The 706/738 ratio being for metastable vs. weakest intensity.

Fig. 9
Fig. 9

Results for 800/738 intensity ratio. Power in watts, pressure in mTorr and flow rate in sccm. The 800/738 ratio being for strongest intensity vs. weakest intensity.

Fig. 10
Fig. 10

Results for 912/751 intensity ratio. Power in watts, pressure in mTorr and flow rate in sccm. The 912/751 ratio being for strongest intensity vs. weakest one.

Fig. 5
Fig. 5

Results for 811/842 intensity ratio. Power in watts, pressure in mTorr and flow rate in sccm. The 811/842 ratio being for strongest intensity vs. weakest one.

Fig. 12
Fig. 12

Applying self-absorption correction of 25% (100 to 300 Watts) to the Argon line used in Actinometry. Black circles are 777 nm atomic Oxygen calculated density without self-absorption, the yellow/grey circles with self-absorption correction. Green/grey squares are 844 nm atomic Oxygen calculated density without self-absorption, red/black squares with self-absorption correction.

Tables (4)

Tables Icon

Table 1 Spectroscopic data of relevant atomic Argon emission spectral lines. Wavelengths (λ), multiplet, relative intensity, transition probability values (Aki), lower energy level (Ei), upper energy level (Ek) and upper level statistical weight (gk)are taken from [12]. Table has been divided into sections by multiplet.

Tables Icon

Table 2 Theoretical line ratio results calculated by Eq. (1). The * represents spectral lines where the lower energy level is the metastable one.

Tables Icon

Table 3 Percentage difference for all parameters comparison.

Tables Icon

Table 4 Theoretical line intensities (Eq. (1) vs. measured.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S[a.u.]= g k1 λ 1 3 A ki1 g k2 λ 2 3 A ki2

Metrics