Abstract

Ultrafast carrier dynamics in Cu(In,Ga)Se2 films are investigated using femtosecond pump-probe spectroscopy. Samples prepared by direct sputtering and co-evaporation processes, which exhibited remarkably different crystalline structures and free carrier densities, were found to result in substantially different carrier relaxation and recombination mechanisms. For the sputtered CIGS films, electron-electron scattering and Auger recombination was observed, whereas for the co-evaporated CIGS films, bandgap renormalization accompanied by band filling effect and hot phonon relaxation was observed. The lifetime of defect-related recombination in the co-evaporated CIGS films is much longer than that in the direct-sputtered CIGS films, reflecting a better quality with higher energy conversion efficiency of the former.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
    [CrossRef]
  2. M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
    [CrossRef]
  3. G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S,” J. Appl. Phys. 102(7), 074922 (2007).
    [CrossRef]
  4. V. Alberts, J. Titus, and R. W. Birkmire, “Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenizationy/sulfurization of metallic alloys,” Thin Solid Films 451–452, 207–211 (2004).
    [CrossRef]
  5. S. Chaisitsak, A. Yamada, and M. Konagai, “Preferred orientation control of Cu(In1-xGax)Se2 (x ≈ 0.28) thin films and its influence on solar cell characteristics,” Jpn. J. Appl. Phys. 41(Part 1, No. 2A), 507–513 (2002).
    [CrossRef]
  6. C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
    [CrossRef] [PubMed]
  7. M. Nishitani, T. Negami, N. Kohara, and T. Wada, “Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys. 82(7), 3572–3575 (1997).
    [CrossRef]
  8. B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
    [CrossRef]
  9. A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
    [CrossRef]
  10. T. R. Tsai, C. F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films,” Appl. Phys. Lett. 90(25), 252111 (2007).
    [CrossRef]
  11. J. A. Kash, “Carrier-carrier scattering: An experimental comparison of bulk GaAs and GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 48(24), 18336–18339 (1993).
    [CrossRef] [PubMed]
  12. D. W. Snoke, “Density dependence of electron scattering at low density,” Phys. Rev. B Condens. Matter 50(16), 11583–11591 (1994).
    [CrossRef] [PubMed]
  13. A. Haug, “Carrier density dependence of Auger recombination,” Solid-State Electron. 21(11-12), 1281–1284 (1978).
    [CrossRef]
  14. T. Korn, A. Franke-Wiekhorst, S. Schnüll, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys. 91(4), 2333–2336 (2002).
    [CrossRef]
  15. R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
    [CrossRef]

2011

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

2007

G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S,” J. Appl. Phys. 102(7), 074922 (2007).
[CrossRef]

T. R. Tsai, C. F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films,” Appl. Phys. Lett. 90(25), 252111 (2007).
[CrossRef]

2006

R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
[CrossRef]

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

2004

V. Alberts, J. Titus, and R. W. Birkmire, “Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenizationy/sulfurization of metallic alloys,” Thin Solid Films 451–452, 207–211 (2004).
[CrossRef]

2002

S. Chaisitsak, A. Yamada, and M. Konagai, “Preferred orientation control of Cu(In1-xGax)Se2 (x ≈ 0.28) thin films and its influence on solar cell characteristics,” Jpn. J. Appl. Phys. 41(Part 1, No. 2A), 507–513 (2002).
[CrossRef]

T. Korn, A. Franke-Wiekhorst, S. Schnüll, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys. 91(4), 2333–2336 (2002).
[CrossRef]

1998

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
[CrossRef]

1997

M. Nishitani, T. Negami, N. Kohara, and T. Wada, “Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys. 82(7), 3572–3575 (1997).
[CrossRef]

1994

D. W. Snoke, “Density dependence of electron scattering at low density,” Phys. Rev. B Condens. Matter 50(16), 11583–11591 (1994).
[CrossRef] [PubMed]

1993

J. A. Kash, “Carrier-carrier scattering: An experimental comparison of bulk GaAs and GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 48(24), 18336–18339 (1993).
[CrossRef] [PubMed]

1978

A. Haug, “Carrier density dependence of Auger recombination,” Solid-State Electron. 21(11-12), 1281–1284 (1978).
[CrossRef]

Alberts, V.

V. Alberts, J. Titus, and R. W. Birkmire, “Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenizationy/sulfurization of metallic alloys,” Thin Solid Films 451–452, 207–211 (2004).
[CrossRef]

Ascázubi, R.

R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
[CrossRef]

Bacher, G.

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

Bereznev, S.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Birkmire, R. W.

G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S,” J. Appl. Phys. 102(7), 074922 (2007).
[CrossRef]

V. Alberts, J. Titus, and R. W. Birkmire, “Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenizationy/sulfurization of metallic alloys,” Thin Solid Films 451–452, 207–211 (2004).
[CrossRef]

Chaisitsak, S.

S. Chaisitsak, A. Yamada, and M. Konagai, “Preferred orientation control of Cu(In1-xGax)Se2 (x ≈ 0.28) thin films and its influence on solar cell characteristics,” Jpn. J. Appl. Phys. 41(Part 1, No. 2A), 507–513 (2002).
[CrossRef]

Chang, C. F.

T. R. Tsai, C. F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films,” Appl. Phys. Lett. 90(25), 252111 (2007).
[CrossRef]

Chen, C. H.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Chen, L. J.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Chen, S. Y.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Cho, S.

R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
[CrossRef]

Chueh, Y. L.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Forchel, A.

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

Franke-Wiekhorst, A.

T. Korn, A. Franke-Wiekhorst, S. Schnüll, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys. 91(4), 2333–2336 (2002).
[CrossRef]

Ganchev, M.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Gwo, S.

T. R. Tsai, C. F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films,” Appl. Phys. Lett. 90(25), 252111 (2007).
[CrossRef]

Hanket, G. M.

G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S,” J. Appl. Phys. 102(7), 074922 (2007).
[CrossRef]

Hariskos, D.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Haug, A.

A. Haug, “Carrier density dependence of Auger recombination,” Solid-State Electron. 21(11-12), 1281–1284 (1978).
[CrossRef]

Jackson, P.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Juang, J. Y.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Kaelin, M.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Karg, F. H.

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

Kash, J. A.

J. A. Kash, “Carrier-carrier scattering: An experimental comparison of bulk GaAs and GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 48(24), 18336–18339 (1993).
[CrossRef] [PubMed]

Kohara, N.

M. Nishitani, T. Negami, N. Kohara, and T. Wada, “Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys. 82(7), 3572–3575 (1997).
[CrossRef]

Kois, J.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Konagai, M.

S. Chaisitsak, A. Yamada, and M. Konagai, “Preferred orientation control of Cu(In1-xGax)Se2 (x ≈ 0.28) thin films and its influence on solar cell characteristics,” Jpn. J. Appl. Phys. 41(Part 1, No. 2A), 507–513 (2002).
[CrossRef]

Korn, T.

T. Korn, A. Franke-Wiekhorst, S. Schnüll, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys. 91(4), 2333–2336 (2002).
[CrossRef]

Kuo, H. C.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Kuo, W. C.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Lai, C. H.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Liao, Y. K.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Liu, C. H.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Lotter, E.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Lu, H.

R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
[CrossRef]

McCandless, B. E.

G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S,” J. Appl. Phys. 102(7), 074922 (2007).
[CrossRef]

Menner, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Negami, T.

M. Nishitani, T. Negami, N. Kohara, and T. Wada, “Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys. 82(7), 3572–3575 (1997).
[CrossRef]

Nishitani, M.

M. Nishitani, T. Negami, N. Kohara, and T. Wada, “Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys. 82(7), 3572–3575 (1997).
[CrossRef]

Ohnesorge, B.

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

Othonos, A.

A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
[CrossRef]

Paetel, S.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Powalla, M.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Riedl, W.

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

Schaff, W. J.

R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
[CrossRef]

Schnüll, S.

T. Korn, A. Franke-Wiekhorst, S. Schnüll, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys. 91(4), 2333–2336 (2002).
[CrossRef]

Shafarman, W. N.

G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S,” J. Appl. Phys. 102(7), 074922 (2007).
[CrossRef]

Snoke, D. W.

D. W. Snoke, “Density dependence of electron scattering at low density,” Phys. Rev. B Condens. Matter 50(16), 11583–11591 (1994).
[CrossRef] [PubMed]

Stratieva, N.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Titus, J.

V. Alberts, J. Titus, and R. W. Birkmire, “Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenizationy/sulfurization of metallic alloys,” Thin Solid Films 451–452, 207–211 (2004).
[CrossRef]

Tiwari, A.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Tsai, T. R.

T. R. Tsai, C. F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films,” Appl. Phys. Lett. 90(25), 252111 (2007).
[CrossRef]

Tzvetkova, E.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Volobujeva, O.

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

Wada, T.

M. Nishitani, T. Negami, N. Kohara, and T. Wada, “Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys. 82(7), 3572–3575 (1997).
[CrossRef]

Weigand, R.

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

Wilke, I.

R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
[CrossRef]

T. Korn, A. Franke-Wiekhorst, S. Schnüll, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys. 91(4), 2333–2336 (2002).
[CrossRef]

Wischmann, W.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Wuerz, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Yamada, A.

S. Chaisitsak, A. Yamada, and M. Konagai, “Preferred orientation control of Cu(In1-xGax)Se2 (x ≈ 0.28) thin films and its influence on solar cell characteristics,” Jpn. J. Appl. Phys. 41(Part 1, No. 2A), 507–513 (2002).
[CrossRef]

Yen, Y. T.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett. 73(9), 1224–1226 (1998).
[CrossRef]

T. R. Tsai, C. F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films,” Appl. Phys. Lett. 90(25), 252111 (2007).
[CrossRef]

R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN,” Appl. Phys. Lett. 88(11), 112111 (2006).
[CrossRef]

J. Appl. Phys.

M. Nishitani, T. Negami, N. Kohara, and T. Wada, “Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys. 82(7), 3572–3575 (1997).
[CrossRef]

T. Korn, A. Franke-Wiekhorst, S. Schnüll, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys. 91(4), 2333–2336 (2002).
[CrossRef]

A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83(4), 1789–1830 (1998).
[CrossRef]

G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S,” J. Appl. Phys. 102(7), 074922 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

S. Chaisitsak, A. Yamada, and M. Konagai, “Preferred orientation control of Cu(In1-xGax)Se2 (x ≈ 0.28) thin films and its influence on solar cell characteristics,” Jpn. J. Appl. Phys. 41(Part 1, No. 2A), 507–513 (2002).
[CrossRef]

Nano Lett.

C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J. Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter

J. A. Kash, “Carrier-carrier scattering: An experimental comparison of bulk GaAs and GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B Condens. Matter 48(24), 18336–18339 (1993).
[CrossRef] [PubMed]

D. W. Snoke, “Density dependence of electron scattering at low density,” Phys. Rev. B Condens. Matter 50(16), 11583–11591 (1994).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Solid-State Electron.

A. Haug, “Carrier density dependence of Auger recombination,” Solid-State Electron. 21(11-12), 1281–1284 (1978).
[CrossRef]

Thin Solid Films

M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors,” Thin Solid Films 511–512, 325–327 (2006).
[CrossRef]

V. Alberts, J. Titus, and R. W. Birkmire, “Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenizationy/sulfurization of metallic alloys,” Thin Solid Films 451–452, 207–211 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

I-V characteristics of CIGS solar cells prepared by (a) direct sputtering and (b) co-evaporation processes. Insets show the corresponding SEM images of the two samples.

Fig. 2
Fig. 2

(a) Reflectivity transient for the direct sputtered CIGS films. The inset shows the semi-log plot of the ∆R/R curve for a pump fluence of 1.25 mJ/cm2. The curves were fitted with a biexponential decay function, [A1exp(-t/τfast) + A2exp(-t/τslow)]. Where τfast is the characteristic cooling time of photoexcited hot carriers and τslow is related to carrier recombination. (b) The reflectivity transient for the co-evaporated CIGS films. The negative reflectivity in short delay time is due to the bandgap renormalization effect. The subsequent positive reflectivity transient decay fitted with a biexponential decay is originated from the fast process of the hot phonon relaxation, while the following slow process is due to the defect-related non-radiative recombination.

Fig. 3
Fig. 3

(a) The extracted carrier cooling lifetime (τfast) in a short delay time under different carrier densities in the direct sputtered CIGS film. (b) The 1/τslow extracted from the slower component in the biexponential decay function used to fit the reflectivity transient of the direct sputtered CIGS thin films.

Fig. 4
Fig. 4

(a) The extracted carrier cooling lifetime (τfast) in a short delay time under different carrier densities in the co-evaporated CIGS films. (b) The defect-related recombination lifetime (τn) as function of the total carrier density for the co-evaporated CIGS films.

Tables (1)

Tables Icon

Table 1 The photovoltaic parameters for direct sputtered and co-evaporated CIGS samples

Metrics