Abstract

We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  3. F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
    [CrossRef]
  4. S. Kim, J. Zhu, H. Shen, M. Xue, K. Wang, Z. Yu, L. Li, J. H. Park, G. Park, and Q. Pei, “Plasmonic organic solar cell and its absorption enhancement analysis using cylindrical Ag nano-particle model based on finite difference time domain (FDTD),” OSA/CLEO 2011, CMCC1, May (2011).
  5. J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
    [CrossRef]
  6. K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
    [CrossRef]
  7. C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [CrossRef]
  8. W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).
  9. D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).
  10. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
    [CrossRef]
  11. A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [CrossRef]
  12. F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
    [CrossRef]

2011 (2)

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

2010 (2)

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

2009 (1)

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

2008 (2)

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

2007 (2)

K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

2004 (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Afshar, A. H.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Bailly, S.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Berger, P. R.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Chen, F.-C.

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

Choy, W C.H.

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

de Bettignies, R.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Defranoux, C.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Duraisamy, T.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Escoubas, L.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Fan, S.

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Flory, F.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Fung, D. D. S.

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Guillerez, S.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

He, S.

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Ho, J. J.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Hong, Y.

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

Huang, M. H.

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

Inganäs, O.

K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Jo, J.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Jung, K.-Y.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Kim, D.-Y.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kim, S.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Kim, S.-S.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Kuo, C.-H.

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

Lee, C.-L.

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

Lee, J.-Y.

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Li, J.

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Liu, J.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Min, C.-J.

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Monestier, F.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Na, S.-I.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Nah, Y.-C.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

Person, N.-K.

K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Peumans, P.

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Qiao, L.

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Rahachou, A.

K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Reilly III, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Revur, R.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Romero,

A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Sengupta, S.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Sha, F.

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Shen, H.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Simson, J.-J.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Teixeira, F. L.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Torchio, P.

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Tvigstedt, K.

K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Veronis, G.

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Wang, C.

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Wang, K. L.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Wei, E.I.

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Wu, J.-L.

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

Wu, Z.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Xie,

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Xue, M.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Yoon, W.-J.

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Zeng, B.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Zhu, J. F.

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

Zozoulenko, I. V.

K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

J. F. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. J. Ho, A. H. Afshar, B. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett. 98(15), 151110 (2011).
[CrossRef]

K. Tvigstedt, N.-K. Person, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surafce plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

C.-J. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly III, Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95(1), 013305 (2009).
[CrossRef]

J. Appl. Phys. (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

J. Mater. Chem. (1)

D. D. S. Fung, L. Qiao, W C.H. Choy, C. Wang, E.I. Wei, F. Sha, Xie, and S. He, “Optical and electrical properties of efficiency enhanced poymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem. 21, 16349–16353 (2011).

Sol. Energy Mater. Sol. Cells (2)

F. Monestier, J.-J. Simson, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

W.-J. Yoon, K.-Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, “Plasmon-enhanced optical absortion and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Sol. Energy Mater. Sol. Cells 94, 128–132 (2010).

Other (2)

S. Kim, J. Zhu, H. Shen, M. Xue, K. Wang, Z. Yu, L. Li, J. H. Park, G. Park, and Q. Pei, “Plasmonic organic solar cell and its absorption enhancement analysis using cylindrical Ag nano-particle model based on finite difference time domain (FDTD),” OSA/CLEO 2011, CMCC1, May (2011).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Jsc-V curve. (a) a regular without Ag-NPs, and (b) a plasmonic solar cell with Ag-NPs of 5nm thick. The short-circuit current density was obviously enhanced due to the photogeneration of the increased excitons via LSPRs of Ag-NPs. Parameters such as Jsc [mA/cm2], Voc [V], FF [%], and η [%] were estimated to be 4.7mA/cm2, 0.59V, 63.5%, and 1.67% for a regular cell, and 8.2 mA/cm2, 0.58V, 58.7%, and 2.75% for a plasmonic solar cell, respectively. The active area was of 0.12 cm2.

Fig. 2
Fig. 2

A truncated spheroid FDTD model, showing excited LSPR modes that are tightly localized in the vicinity of Ag-NPs within PEDOT:PSS and ITO layers. However, this model results in very limited contribution to the optical absorption enhancement of the solar cell.

Fig. 3
Fig. 3

Schematic diagram of proposed device model. (a) a cylindrical Ag-NPs model, (b) its cross-sectional view in which the local field intensity, | E Z | was integrated over the volume surrounding the cylindrical Ag-NPs.

Fig. 5
Fig. 5

Normalized absorption spectra of P3HT:PCBM layer with and without Ag-NPs. (a) the total absorption of P3HT:PCBM active layer, (b)-(d) the absorption of a local region close to PEDOT:PSS layer. (a) and (b) the height of Ag-NPs was varied from H = 10, 15, to 20nm thick, while two variables such as its radius (D = 60nm) and separation (P = 100nm) were fixed. (c) D = 60 nm, H = 20 nm, and P = 50, 100, 150, 200 nm. (d) H = 20 nm, P = 100 nm, D = 20, 40, 60, 80nm, respectively.

Fig. 6
Fig. 6

Normalized absorption spectra of a local region in active layer close to PEDOT:PSS in case of an arrangement pattern with p = 100nm, h = 20nm, and D = 60nm, and their broadband optical absorption enhancement spectra which was evaluated by the ratio of the field strength with Ag-NPs to that of the regular device without NPs in the wavelength range 300 nm≤λ≤670 nm.

Fig. 4
Fig. 4

Simulated electric field enhancement patterns of Ag-NPs attached to ITO-coated glass at three optical wavelengths, showing LSPRs images produced by the collective oscillations of the conduction electrons. The height of Ag-NPs were regarded as ~20nm which is close to the thickness of the PEDOT:PSS layer

Fig. 7
Fig. 7

The optical absorption spectra of the E-beam deposited Ag-NPs and Ag-NPs/PEDOT:PSS (a), and the P3HT:PCBM/PEDOT:PSS with and without Ag-NPs (b).

Fig. 8
Fig. 8

Atomic Force Microscopy (AFM) images of the surface of P3HT:PCBM layer; (a) and (b), and optical microscope images after completing the device fabrication process as increasing the deposition thickness of Ag-metals; (c) Ag 1nm thick and (d) Ag 7nm thick.

Metrics