Abstract

In this paper, design, fabrication and characterization of an all-silicon photodetector (PD) at 1550 nm, have been reported. Our device is a surface-illuminated PD constituted by a Fabry-Perot microcavity incorporating a Cu/p-Si Schottky diode. Its absorption mechanism, based on the internal photoemission effect (IPE), has been enhanced by critical coupling condition. Our experimental findings prove a peak responsivity of 0.063 mA/W, which is the highest value obtained in a surface-illuminated IPE-based Si PD around 1550 nm. Finally, device capacitance measurements have been carried out demonstrating a capacitance < 5 pF which has the potential for GHz operation subject to a reduction of the series resistance of the ohmic contact.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  2. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
    [CrossRef]
  3. A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightwave Technol.24(3), 1440–1455 (2006).
    [CrossRef]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  5. H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express15(21), 13539–13546 (2007).
    [CrossRef] [PubMed]
  6. O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
    [CrossRef]
  7. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
    [CrossRef] [PubMed]
  8. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
    [CrossRef]
  9. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
    [CrossRef]
  10. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
    [CrossRef]
  11. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  12. M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
    [CrossRef]
  13. M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008).
    [CrossRef]
  14. M. Casalino, L. Sirleto, M. Iodice, and G. Coppola, Photodetectors (InTech, 2012).
  15. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express18(8), 8505–8514 (2010).
    [CrossRef] [PubMed]
  16. W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985).
    [CrossRef]
  17. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
    [CrossRef]
  18. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
    [CrossRef]
  19. O. Mamezaki, M. Fujii, and S. Hayashi, “Internal photoemission from Ag nanoparticles embedded in Al2O3 film,” Jpn. J. Appl. Phys.40(Part 1, No. 9A), 5389–5393 (2001).
    [CrossRef]
  20. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
    [CrossRef] [PubMed]
  21. J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
    [CrossRef]
  22. C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
    [CrossRef] [PubMed]
  23. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys.78(2), 607–639 (1995).
    [CrossRef]
  24. D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).
  25. M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).
  26. H. C. Card, “Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
    [CrossRef]
  27. D. A. G. Bruggeman, “Berechung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfihigkeiten der Mischk6rper aus isotropen Substanzen,” Ann. Phys. Leipzig416(7), 636–664 (1935).
    [CrossRef]
  28. P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
    [CrossRef]
  29. M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films-a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
    [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  31. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
    [CrossRef]
  32. V. E. Vickers, “Model of schottky barrier hot-electron-mode photodetection,” Appl. Opt.10(9), 2190–2192 (1971).
    [CrossRef] [PubMed]
  33. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).
  34. G. T. Reed and A. P. Knights, Silicon Photonics: An introduction (John Wiley & Sons, 2005).
  35. G. Coppola, A. Irace, A. Cutolo, and M. Iodice, “Effect of fabrication errors in channel waveguide Bragg gratings,” Appl. Opt.38(9), 1752–1758 (1999).
    [CrossRef] [PubMed]
  36. S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982).
    [CrossRef]
  37. A. Yariv, Quantum Electronics (John Wiley & Sons, 1989).
  38. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
    [CrossRef]

2011

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films-a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

2010

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express18(8), 8505–8514 (2010).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

2009

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

2008

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008).
[CrossRef]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

2007

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007).
[CrossRef] [PubMed]

H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express15(21), 13539–13546 (2007).
[CrossRef] [PubMed]

2006

2005

O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

2002

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

2001

O. Mamezaki, M. Fujii, and S. Hayashi, “Internal photoemission from Ag nanoparticles embedded in Al2O3 film,” Jpn. J. Appl. Phys.40(Part 1, No. 9A), 5389–5393 (2001).
[CrossRef]

2000

P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
[CrossRef]

J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
[CrossRef]

1999

1995

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys.78(2), 607–639 (1995).
[CrossRef]

1985

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985).
[CrossRef]

1982

S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982).
[CrossRef]

1976

H. C. Card, “Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
[CrossRef]

1971

1935

D. A. G. Bruggeman, “Berechung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfihigkeiten der Mischk6rper aus isotropen Substanzen,” Ann. Phys. Leipzig416(7), 636–664 (1935).
[CrossRef]

1931

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
[CrossRef]

Ackert, J. J.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Akbari, A.

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Barucci, M.

C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
[CrossRef] [PubMed]

Berini, P.

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express18(8), 8505–8514 (2010).
[CrossRef] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

Bowers, J. E.

Brown, D. M.

S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfihigkeiten der Mischk6rper aus isotropen Substanzen,” Ann. Phys. Leipzig416(7), 636–664 (1935).
[CrossRef]

Can, D. D.

O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Card, H. C.

H. C. Card, “Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
[CrossRef]

Casalino, M.

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008).
[CrossRef]

Chen, H.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
[CrossRef]

Chetrit, Y.

Ciftcioglu, B.

Cohen, O.

Cohen, S. S.

S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982).
[CrossRef]

Collins, R. W.

P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
[CrossRef]

Coppola, G.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

G. Coppola, A. Irace, A. Cutolo, and M. Iodice, “Effect of fabrication errors in channel waveguide Bragg gratings,” Appl. Opt.38(9), 1752–1758 (1999).
[CrossRef] [PubMed]

Cutolo, A.

Daffara, C.

C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
[CrossRef] [PubMed]

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

De La Rue, R. M.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Desiatov, B.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Dosunmu, O. I.

O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Elsey, M.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
[CrossRef]

Emsley, M. K.

O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Esper, J.

J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
[CrossRef]

Fang, A. W.

Fathpour, S.

Ferlauto, A. S.

P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
[CrossRef]

Fontana, R.

C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
[CrossRef] [PubMed]

Fowler, R. H.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
[CrossRef]

Fujii, M.

O. Mamezaki, M. Fujii, and S. Hayashi, “Internal photoemission from Ag nanoparticles embedded in Al2O3 film,” Jpn. J. Appl. Phys.40(Part 1, No. 9A), 5389–5393 (2001).
[CrossRef]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Ghezzo, M.

S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982).
[CrossRef]

Gildenblat, G.

S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982).
[CrossRef]

Gioffrè, M.

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

Goykhman, I.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Groppe, J. V.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985).
[CrossRef]

Hak, D.

Hayashi, S.

O. Mamezaki, M. Fujii, and S. Hayashi, “Internal photoemission from Ag nanoparticles embedded in Al2O3 film,” Jpn. J. Appl. Phys.40(Part 1, No. 9A), 5389–5393 (2001).
[CrossRef]

Iodice, M.

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

G. Coppola, A. Irace, A. Cutolo, and M. Iodice, “Effect of fabrication errors in channel waveguide Bragg gratings,” Appl. Opt.38(9), 1752–1758 (1999).
[CrossRef] [PubMed]

Irace, A.

Izhaky, N.

Jalali, B.

Jessop, P. E.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Jones, R.

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Kimerling, L. C.

O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Knights, A. P.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Koh, J.

P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
[CrossRef]

Kosonocky, W. F.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985).
[CrossRef]

Kuo, Y. H.

Kwong, D. L.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Levy, U.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Liao, L.

Liu, A.

Lo, G. Q.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

Logan, D. F.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Loncaric, M.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films-a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

Luo, X.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Mamezaki, O.

O. Mamezaki, M. Fujii, and S. Hayashi, “Internal photoemission from Ag nanoparticles embedded in Al2O3 film,” Jpn. J. Appl. Phys.40(Part 1, No. 9A), 5389–5393 (2001).
[CrossRef]

Moretti, L.

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

Murray, K. J.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Neeck, S.

J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
[CrossRef]

Nguyen, H.

Pampaloni, E.

C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
[CrossRef] [PubMed]

Panetta, P.

J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
[CrossRef]

Paniccia, M.

Paniccia, M. J.

Park, H.

Pezzati, L.

C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
[CrossRef] [PubMed]

Poon, A. W.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
[CrossRef]

Post, E.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
[CrossRef]

Rendina, I.

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008).
[CrossRef]

Rovira, P. I.

P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
[CrossRef]

Rowe, L. K.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
[CrossRef]

Rubin, D.

Ryschkewitsch, M.

J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
[CrossRef]

Saffioti, N.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

Sancho-Parramon, J.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films-a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Shallcross, F. V.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985).
[CrossRef]

Shappir, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Sirleto, L.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008).
[CrossRef]

Sorel, M.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys.78(2), 607–639 (1995).
[CrossRef]

Tait, R. N.

Tarr, N. G.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
[CrossRef]

Tsang, H. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Unlu, M. S.

O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys.78(2), 607–639 (1995).
[CrossRef]

Velha, P.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Vickers, V. E.

Villani, T. S.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985).
[CrossRef]

Wiscombe, W.

J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
[CrossRef]

Wronski, C. R.

P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
[CrossRef]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Yu, M. B.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

Zhu, S.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

Zorc, H.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films-a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

Acc. Chem. Res.

C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, and R. Fontana, “Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics,” Acc. Chem. Res.43(6), 847–856 (2010).
[CrossRef] [PubMed]

Acta Astronaut.

J. Esper, P. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “NASA-GSFC Nano-satellite technology for earth science missions,” Acta Astronaut.46(2-6), 287–296 (2000).
[CrossRef]

Ann. Phys. Leipzig

D. A. G. Bruggeman, “Berechung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfihigkeiten der Mischk6rper aus isotropen Substanzen,” Ann. Phys. Leipzig416(7), 636–664 (1935).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett.92(25), 251104 (2008).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
[CrossRef]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

Electron. Lett.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett.43(7), 392–393 (2007).
[CrossRef]

IEEE J. Quantum Electron.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

O. I. Dosunmu, D. D. Can, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

IEEE Trans. Electron. Dev.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160x244 Element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev.32(8), 1564–1573 (1985).
[CrossRef]

H. C. Card, “Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
[CrossRef]

J. Appl. Phys.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys.78(2), 607–639 (1995).
[CrossRef]

J. Electrochem. Soc.

S. S. Cohen, G. Gildenblat, M. Ghezzo, and D. M. Brown, “Al-0.9% Si/Si ohmic contacts to shallow junctions,” J. Electrochem. Soc.129(6), 1335–1338 (1982).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

P. I. Rovira, A. S. Ferlauto, J. Koh, C. R. Wronski, and R. W. Collins, “Optics of textured amorphous silicon surfaces,” J. Non-Cryst. Solids266–269, 279–283 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

D. F. Logan, K. J. Murray, J. J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. A, Pure Appl. Opt.13, 125503 (2011).

Jpn. J. Appl. Phys.

O. Mamezaki, M. Fujii, and S. Hayashi, “Internal photoemission from Ag nanoparticles embedded in Al2O3 film,” Jpn. J. Appl. Phys.40(Part 1, No. 9A), 5389–5393 (2001).
[CrossRef]

Nano Lett.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
[CrossRef]

Semicond. Sci. Technol.

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol.23(7), 075001 (2008).
[CrossRef]

Sensors (Basel)

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Thin Solid Films

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films-a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).

G. T. Reed and A. P. Knights, Silicon Photonics: An introduction (John Wiley & Sons, 2005).

A. Yariv, Quantum Electronics (John Wiley & Sons, 1989).

M. Casalino, L. Sirleto, M. Iodice, and G. Coppola, Photodetectors (InTech, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic cross section of the proposed photodetector.

Fig. 2
Fig. 2

Top view of the proposed fabricated devices.

Fig. 3
Fig. 3

Cu complex refractive index dispersion.

Fig. 4
Fig. 4

(a) Energy band diagram for a metal/n-semiconductor junction. (b) Schematization of the proposed device as an asymmetric plane mirror Fabry-Perot resonator.

Fig. 5
Fig. 5

Reflectivity versus number of DBR stacks at 1550 nm (blue solid line). Horizontal line is 200 nm-thick-Cu mirror reflectivity at 1550 nm (red dashed line).

Fig. 6
Fig. 6

Proposed device simulated absorbance in resonance condition vs DBR reflectivity.

Fig. 7
Fig. 7

J-V characteristic and respective curve fitting of the proposed device.

Fig. 8
Fig. 8

Measured responsivity versus wavelength for the proposed for the proposed 40 µm-radius-photodetector.

Fig. 9
Fig. 9

Measured responsivity versus wavelength for the proposed 20 µm-radius-photodetector.

Fig. 10
Fig. 10

Measured junction capacitance vs reverse bias for the proposed 20 µm-radius-device.

Tables (1)

Tables Icon

Table 1 Value of Thickness and Complex Refractive Index at 1550nm as Calculated

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Resp= λ[ nm ] 1242 η= λ[ nm ] 1242 A T F e P e η c
R DBR = R METAL e 2γL

Metrics