Abstract

A 2 × 2 non-blocking switch matrix based on the Mach–Zehnder (MZ) interferometer was designed and fabricated on silicon-on-insulator (SOI) wafer through 0.8-μm standard commercial CMOS foundry. The two paired multimode-imaging (MMI) couplers in each MZ switching element were used as power splitters and combiners. Experimental results show that the switching elements are electrically driven with a switching speed of 17.4 ns and its cross-talk is lower than −16.1 dB under a common spectral bandwidth of 35 nm. The total switching power consumption varies from 4.55 mW to 22.4 mW for different switching paths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kartner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects [Invited],” J. Opt. Netw. 6(1), 63–73 (2007).
    [CrossRef]
  2. K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
    [CrossRef]
  3. A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).
  4. K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32(16), 1471–1472 (1996).
    [CrossRef]
  5. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  6. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
    [CrossRef]
  7. A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
    [CrossRef]
  8. Y. T. Li, J. Z. Yu, S. W. Chen, Y. P. Li, and Y. Y. Chen, “Submicrosecond rearrangeable non-blocking silicon-on-insulator thermo-optic 4 × 4 switch matrix,” Opt. Lett. 32(6), 603–604 (2007).
    [CrossRef] [PubMed]
  9. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-Optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
    [CrossRef] [PubMed]
  10. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
    [CrossRef]
  11. I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
    [CrossRef]
  12. W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
    [CrossRef]
  13. H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
    [CrossRef] [PubMed]
  14. Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
    [CrossRef]
  15. Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).
  16. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
    [CrossRef]
  17. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef] [PubMed]
  18. N. S. Lagali, M. R. Palam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17(12), 2542–2550 (1999).
    [CrossRef]

2012 (1)

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

2011 (2)

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-Optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[CrossRef] [PubMed]

2010 (2)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
[CrossRef]

2009 (2)

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

2008 (1)

2007 (2)

2001 (1)

1999 (1)

1998 (1)

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

1996 (2)

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32(16), 1471–1472 (1996).
[CrossRef]

1994 (1)

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

1988 (1)

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

Assefa, S.

Barwicz, T.

Bergman, K.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Byun, H.

Cerrina, F.

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Chen, L.

Chen, S. W.

Chen, Y. Y.

Doany, F. E.

Driessen, A.

Gan, F.

Geis, M.

Goh, T.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

Green, W. M. J.

Grein, M.

Hao, Y. L.

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

Hattori, K.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

Himeno, A.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32(16), 1471–1472 (1996).
[CrossRef]

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).

Holzwarth, C. W.

Hoyt, J. L.

Hu, T.

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

Ippen, E. P.

Ito, T.

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).

Iwama, T.

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

Jahnes, C. V.

Jiang, X. Q.

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

Kartner, F. X.

Kash, J. A.

Kato, K.

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).

Kimerling, L. C.

Lagali, N. S.

Lee, B. G.

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-Optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
[CrossRef] [PubMed]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Lee, K. K.

Li, Y. P.

Li, Y. T.

Lim, D. R.

Lipson, M.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Lyszczarz, T.

MacDonald, R. I.

Nagase, R.

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).

Nakajima, H.

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

Nakamoto, H.

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

Ohmori, Y.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32(16), 1471–1472 (1996).
[CrossRef]

Okamoto, K.

K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32(16), 1471–1472 (1996).
[CrossRef]

Okuno, M.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32(16), 1471–1472 (1996).
[CrossRef]

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).

Olubuyide, O. O.

Orcutt, J. S.

Palam, M. R.

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Popovic, M. A.

Rakich, P. T.

Ram, R. J.

Sato, K.

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

Sawaki, I.

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Schow, C. L.

Shao, H. F.

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

Sherwood-Droz, N.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Shimoe, T.

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

Shin, J.

Smith, H. I.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Spector, S.

Stojanovic, V.

Van Campenhout, J.

Vlasov, Y. A.

Wang, H.

Wang, M. H.

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

Wang, W. J.

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

Watts, M. R.

Worhoff, K.

Yamane, T.

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

Yang, J. Y.

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

Yang, M.

Yasu, M.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

Yoon, J. U.

Yu, J. Z.

Yu, P.

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

Zhao, Y.

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

Zhou, H. F.

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).
[CrossRef] [PubMed]

Electron. Lett. (1)

K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32(16), 1471–1472 (1996).
[CrossRef]

IEEE Commun. Mag. (1)

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

I. Sawaki, T. Shimoe, H. Nakamoto, T. Iwama, T. Yamane, and H. Nakajima, “Rectangularly configured 4 x 4 Ti:LiNbO3 matrix switch with low drive voltage,” IEEE J. Sel. Areas Comm. 6(7), 1267–1272 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22(12), 926–928 (2010).
[CrossRef]

W. J. Wang, Y. Zhao, H. F. Zhou, Y. L. Hao, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “CMOS-compatible 1×3 silicon electro-optic switch with low crosstalk,” IEEE Photon. Technol. Lett. 23(11), 751–753 (2011).
[CrossRef]

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermo-optical matrix switch,” IEEE Photon. Technol. Lett. 10(6), 810–812 (1998).
[CrossRef]

IEICE Trans. Commun. (1)

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic intermodule connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E77-B, 155–162 (1994).

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Microw. Opt. Technol. Lett. (1)

Y. Zhao, H. F. Shao, T. Hu, P. Yu, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “A silicon quasi-DOS based on reverse-biased pn diode,” Microw. Opt. Technol. Lett. 54(3), 635–638 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

Y. Zhao, H. F. Zhou, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Fabrication of silicon photonic devices by utilizing industrial CMOS technology,” Proc. SPIE 7516, 1–6 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the 4 × 4 Mach-Zehnder based switch matrix (b) Structure of the 2 × 2 Mach-Zehnder based switching element (c) Ellipse-based crossing waveguide (d) Cross-section of the p-i-n diode phase shifter.

Fig. 2
Fig. 2

Simulation results of (a)the 2 × 2 MMI and (b) the ellipse-based waveguide crossing

Fig. 3
Fig. 3

Top views of (a) the fabricated nonblocking 2 × 2 MZ switch matrix. (b) the ellipse-based waveguide crossing and (c) a swtiching element. (d) SEM photo of a waveguide cross section

Fig. 4
Fig. 4

Switching characteristics of 2 × 2 nonblocking switch matrix

Fig. 5
Fig. 5

Transmission spectra of the 2 × 2 non-blocking switch matrix. The circle and triangle traces represent the transmission to the Po1 and Po3, respectively. The two columns respectively represent transmittance spectra from the Pi1 and Pi3 ports.

Fig. 6
Fig. 6

Switching characteristic for the switching matrix

Tables (2)

Tables Icon

Table 1 Physical Paths for the 2 × 2 Non-Blocking Switch mATRIX

Tables Icon

Table 2 Steady State Power Consumption for Each Path

Metrics