Abstract

We propose and demonstrate a new technique for measuring mode couplings along a multi-core fiber (MCF) that employs a multi-channel optical time domain reflectometer (OTDR). The mode couplings along seven core fibers are successfully obtained using a synchronous seven-channel OTDR.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x79x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” OFC 2011, paper PDPB6.
  2. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P.W. Wisk, D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” OFC 2011, paper PDPB7.
  3. B. Zhu, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s (7x160x107 Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore fiber,” ECOC 2011, Tu5.B5.
  4. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km b/s/Hz,” ECOC 2011, Th13.C4.
  5. X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “1.12 Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexing with 60-b/s/Hz aggregate spectral efficiency,” ECOC 2011, Th13.B1.
  6. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” OFC 2012, PDP5C.1.
  7. P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J. -Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” ECOC 2011, Tu5.B7.
  8. M. Nakazawa, M. Yoshida, and T. Hirooka, “Nondestructive measurement of mode couplings along a multi-core fiber using a multi-channel OTDR,” OFC 2012, OTh3I.3.
  9. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1974).
  10. M. Nakazawa, M. Tokuda, and Y. Negishi, “Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique,” Opt. Lett. 8(10), 546–548 (1983).
    [CrossRef] [PubMed]
  11. M. Nakazawa, N. Shibata, M. Tokuda, and Y. Negishi, “Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers,” J. Opt. Soc. Am. A 1(3), 285–292 (1984).
    [CrossRef]
  12. M. Nakazawa, “Rayleigh backscattering theory for single-mode optical fibers,” J. Opt. Soc. Am. 73(9), 1175–1180 (1983).
    [CrossRef]
  13. I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
    [CrossRef]

1984 (1)

1983 (2)

1981 (1)

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[CrossRef]

Nakazawa, M.

Negishi, Y.

Shibata, N.

Tokuda, M.

IEEE J. Quantum Electron. (1)

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17(1), 15–22 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (9)

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x79x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” OFC 2011, paper PDPB6.

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P.W. Wisk, D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” OFC 2011, paper PDPB7.

B. Zhu, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s (7x160x107 Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore fiber,” ECOC 2011, Tu5.B5.

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km b/s/Hz,” ECOC 2011, Th13.C4.

X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “1.12 Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexing with 60-b/s/Hz aggregate spectral efficiency,” ECOC 2011, Th13.B1.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” OFC 2012, PDP5C.1.

P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J. -Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” ECOC 2011, Tu5.B7.

M. Nakazawa, M. Yoshida, and T. Hirooka, “Nondestructive measurement of mode couplings along a multi-core fiber using a multi-channel OTDR,” OFC 2012, OTh3I.3.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic view of MCF mode coupling measurement system using multi-channel OTDR.

Fig. 2
Fig. 2

Measurement of mode coupling coefficients between all adjacent cores.

Fig. 3
Fig. 3

Configuration (a) and photograph (b) of an optical combiner.

Fig. 4
Fig. 4

Backscattered signals along each core of MCF A when core 1 was excited. (a) and (b) correspond to pulse widths of 0.5 and 1 μs, respectively.

Fig. 5
Fig. 5

Changes in mode coupling ratio (a)-(d) when a 1 μs optical pulse was coupled into cores 1, 2, 4, and 6, respectively.

Fig. 6
Fig. 6

Mode coupling ratio equality between two cores. (a): Cores 1 and 2, (b): cores 1 and 4, and (c): cores 1 and 6.

Fig. 7
Fig. 7

Mode coupling ratio measurement results. A 1 μs optical pulse was coupled into core 1 from the other end of the MCF.

Fig. 8
Fig. 8

Comparison of mode coupling ratio of η6,1 plotted in Figs. 5(a) and 7.

Fig. 9
Fig. 9

Changes in mode coupling coefficient. (a) between cores 1 and 2, and (b) between cores 4 and 5.

Fig. 10
Fig. 10

Backscattered signals along each core of MCF B. (a): a 0.5 μs optical pulse was coupled into core1, and (b): a 2 μs optical pulse was coupled into core 2.

Fig. 11
Fig. 11

Changes in the mode coupling ratio (a)-(d) when a 0.5 μs optical pulse was coupled into cores 1, 2, 4, and 6, respectively.

Fig. 12
Fig. 12

Changes in mode coupling coefficient. (a) between cores 1 and 2, and (b) between cores 2 and 3.

Tables (4)

Tables Icon

Table 1 Coupling Loss and Crosstalk of an Optical Combiner

Tables Icon

Table 2 Fiber Parameters of Two Kinds of MCF

Tables Icon

Table 3 Comparison of Crosstalk Values Measured with Conventional Transmission Method

Tables Icon

Table 4 Comparison of Crosstalk Values of Fiber B Measured with Conventional Transmission Method

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d P m dz = α m P m + h m,n ( P n P m ) , d P n dz = α n P n + h n,m ( P m P n ) ,
d P m dz = α m P m + n=1,nm 7 h m,n P n n=1,nm 7 h n,m P m ,
P 1 (L)= P 0 exp( h n,1 L)cosh( h n,1 L)exp(αL), P n (L)= P 0 exp( h n,1 L)sinh( h n,1 L)exp(αL) ,
P bs1 = P 0 2 S V g W 2 α R exp(2αL)[ 1+exp(4 h n,1 L)+2Kexp(2 h n,1 L)cosh( h n,1 L)sinh( h n,1 L) ] , P bsn = P 0 2 S V g W 2 α R exp(2αL)[ 1exp(4 h n,1 L)+2Kexp(2 h n,1 L)cos h 2 ( h n,1 L) ] .
η n,1 (L)= P bsn P bs1 =2 h n,1 L+K,
h n,m = | K n,m | 2 = | K ˜ n,m | 2 | Γ(Δk) | 2 ,
K n,m = K ˜ n,m f(z) and f(z) =0,
K ˜ n,m = iω ε 0 4P E n E m dS ,
| Γ(Δk) | 2 = f(z)f(zz') e iΔk(zz') dz .
K x,y = ik 2 f(z) .
h x,y = | K x,y | 2 = k 2 4 | Γ(Δk) | 2 ,
K= k 2 | Γ(2k) | 2 S α R = π w 2 f(z)f(zz') exp(i2kz)dz g(r)g(rr') exp(i2kz)dV .
K f(z)f(zz') exp(i2kz)dz g(z)g(zz') exp(i2kz)dz .
h n,1 ( z 0 )= 1 2 d η n,1 dz | z 0 = η n,1 ( z 0 +Δz/2) η n,1 ( z 0 Δz/2) 2Δz .
d dz ( P 1 (z) P 2 (z) P 7 (z) )=( α 1 n=2 7 h 1,n (z) h 1,2 (z) h 1,7 (z) h 1,2 (z) α 2 n=1,n2 7 h 2,n (z) h 2,7 (z) h 1,7 (z) h 2,7 (z) α 7 n=1 6 h 7,n (z) )( P 1 (z) P 2 (z) P 7 (z) ) .

Metrics