Abstract

An ultrathin and simultaneously broadband high impedance surface absorber based on a metamaterial (MM) substrate is presented at microwave frequencies. The MM substrate is designed using metallic split ring resonators (SRRs) vertically embedded into a dielectric slab. Both the simulated and experimental results display two absorption peaks and an expanded absorption bandwidth of less than −10 dB compared to conventional ultrathin absorbers. By analyzing the field distributions and the substrate impedance characteristics, it is found that this feature is mainly related to the LC resonance of the substrate caused by the embedded SRRs. Our results demonstrate the great feasibility of broadening the absorption bandwidth of the ultrathin high impedance surface absorbers by the MMs incorporation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  3. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  7. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
    [CrossRef]
  8. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [CrossRef] [PubMed]
  9. Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
    [CrossRef]
  10. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
    [CrossRef]
  11. M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
    [CrossRef]
  12. S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
    [CrossRef]
  13. L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
    [CrossRef]
  14. O. Acher, “Permeability enhancement of soft magnetic films through metamaterial structures,” J. Magn. Magn. Mater. 320(23), 3276–3281 (2008).
    [CrossRef]
  15. Z. W. Li, R. F. Huang, and L. B. Kong, “Greatly enhanced azimuthal permeability of a ferrite core with a wire coil metamaterial,” Appl. Phys. Lett. 94(16), 162502 (2009).
    [CrossRef]
  16. Z. W. Li, R. F. Huang, and L. B. Kong, “Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core,” J. Appl. Phys. 106(10), 103929 (2009).
    [CrossRef]
  17. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
    [CrossRef]
  18. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [CrossRef] [PubMed]
  19. Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett. 41(17), 936–937 (2005).
    [CrossRef]
  20. O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
    [CrossRef]
  21. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
    [CrossRef]
  22. A. Kazemzadeh and A. Karlsson, “On the absorption mechanism of ultra thin absorbers,” IEEE Trans. Antenn. Propag. 58(10), 3310–3315 (2010).
    [CrossRef]

2011 (5)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[CrossRef]

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[CrossRef]

L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[CrossRef]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

2010 (5)

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[CrossRef]

A. Kazemzadeh and A. Karlsson, “On the absorption mechanism of ultra thin absorbers,” IEEE Trans. Antenn. Propag. 58(10), 3310–3315 (2010).
[CrossRef]

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
[CrossRef]

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[CrossRef]

2009 (5)

Z. W. Li, R. F. Huang, and L. B. Kong, “Greatly enhanced azimuthal permeability of a ferrite core with a wire coil metamaterial,” Appl. Phys. Lett. 94(16), 162502 (2009).
[CrossRef]

Z. W. Li, R. F. Huang, and L. B. Kong, “Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core,” J. Appl. Phys. 106(10), 103929 (2009).
[CrossRef]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
[CrossRef]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

O. Acher, “Permeability enhancement of soft magnetic films through metamaterial structures,” J. Magn. Magn. Mater. 320(23), 3276–3281 (2008).
[CrossRef]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett. 41(17), 936–937 (2005).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Acher, O.

O. Acher, “Permeability enhancement of soft magnetic films through metamaterial structures,” J. Magn. Magn. Mater. 320(23), 3276–3281 (2008).
[CrossRef]

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[CrossRef]

Barrett, J. P.

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[CrossRef]

Chen, K.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Chen, L.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Costa, F.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[CrossRef]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
[CrossRef]

Cui, T. J.

Cummer, A.

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Deng, L. J.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Gao, Q.

Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett. 41(17), 936–937 (2005).
[CrossRef]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Gu, S.

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[CrossRef]

Hand, T. H.

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[CrossRef]

Hou, D. Y.

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
[CrossRef]

Hou, X. W.

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
[CrossRef]

Huang, R. F.

Z. W. Li, R. F. Huang, and L. B. Kong, “Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core,” J. Appl. Phys. 106(10), 103929 (2009).
[CrossRef]

Z. W. Li, R. F. Huang, and L. B. Kong, “Greatly enhanced azimuthal permeability of a ferrite core with a wire coil metamaterial,” Appl. Phys. Lett. 94(16), 162502 (2009).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, W. X.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Karlsson, A.

A. Kazemzadeh and A. Karlsson, “On the absorption mechanism of ultra thin absorbers,” IEEE Trans. Antenn. Propag. 58(10), 3310–3315 (2010).
[CrossRef]

Kazemzadeh, A.

A. Kazemzadeh and A. Karlsson, “On the absorption mechanism of ultra thin absorbers,” IEEE Trans. Antenn. Propag. 58(10), 3310–3315 (2010).
[CrossRef]

Kong, L. B.

Z. W. Li, R. F. Huang, and L. B. Kong, “Greatly enhanced azimuthal permeability of a ferrite core with a wire coil metamaterial,” Appl. Phys. Lett. 94(16), 162502 (2009).
[CrossRef]

Z. W. Li, R. F. Huang, and L. B. Kong, “Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core,” J. Appl. Phys. 106(10), 103929 (2009).
[CrossRef]

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[CrossRef]

Koschny, T.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Li, H.

Li, L.

L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[CrossRef]

Li, M. H.

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
[CrossRef]

Li, Z. W.

Z. W. Li, R. F. Huang, and L. B. Kong, “Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core,” J. Appl. Phys. 106(10), 103929 (2009).
[CrossRef]

Z. W. Li, R. F. Huang, and L. B. Kong, “Greatly enhanced azimuthal permeability of a ferrite core with a wire coil metamaterial,” Appl. Phys. Lett. 94(16), 162502 (2009).
[CrossRef]

Liang, C. H.

L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Luukkonen, O.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
[CrossRef]

Ma, H. F.

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[CrossRef]

Manceau, J. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Monorchio, A.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[CrossRef]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
[CrossRef]

Ozbay, E.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Popa, B. I.

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shen, N. H.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Shen, X.

Simovski, C. R.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
[CrossRef]

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[CrossRef]

Soukoulis, C. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tian, Y.

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
[CrossRef]

Tretyakov, S. A.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
[CrossRef]

Tzortzakis, S.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Wang, B.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Xu, Y. Q.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[CrossRef]

Yan, D. B.

Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett. 41(17), 936–937 (2005).
[CrossRef]

Yang, H. L.

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
[CrossRef]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Yang, Y.

L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[CrossRef]

Yin, Y.

Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett. 41(17), 936–937 (2005).
[CrossRef]

Yuan, N. C.

Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett. 41(17), 936–937 (2005).
[CrossRef]

Zhang, H. B.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[CrossRef]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhao, J.

Zhou, P. H.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[CrossRef]

Z. W. Li, R. F. Huang, and L. B. Kong, “Greatly enhanced azimuthal permeability of a ferrite core with a wire coil metamaterial,” Appl. Phys. Lett. 94(16), 162502 (2009).
[CrossRef]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterial with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[CrossRef]

Electron. Lett. (1)

Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, “Application of metamaterials to ultra-thin radar-absorbing material design,” Electron. Lett. 41(17), 936–937 (2005).
[CrossRef]

IEEE Trans. Antenn. Propag. (3)

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angle and both polarization,” IEEE Trans. Antenn. Propag. 57(10), 3119–3125 (2009).
[CrossRef]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[CrossRef]

A. Kazemzadeh and A. Karlsson, “On the absorption mechanism of ultra thin absorbers,” IEEE Trans. Antenn. Propag. 58(10), 3310–3315 (2010).
[CrossRef]

J. Appl. Phys. (4)

Z. W. Li, R. F. Huang, and L. B. Kong, “Permeability and resonance characteristics of metamaterial constructed by a wire coil wound on a ferrite core,” J. Appl. Phys. 106(10), 103929 (2009).
[CrossRef]

S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys. 108(6), 064913 (2010).
[CrossRef]

L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[CrossRef]

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[CrossRef]

J. Magn. Magn. Mater. (1)

O. Acher, “Permeability enhancement of soft magnetic films through metamaterial structures,” J. Magn. Magn. Mater. 320(23), 3276–3281 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Prog. Electromag. Res. (1)

M. H. Li, H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromag. Res. 108, 37–49 (2010).
[CrossRef]

Science (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the designed MM based absorber: (a) Single unit cell of the MM based absorber, (b) perspective view and (c) sectional view of the MM substrate. The geometry of the array is square in shape and the thickness of h is less than λ/4 at the operating frequency. Each unit cell only includes one SRR symmetrically and vertically.

Fig. 2
Fig. 2

Simulated and measured reflectivity of the MM based absorber with the incident electric field propagating along (a) the x-axis and (b) y-axis directions. Inserts show the power loss density at the corresponding absorption peaks. Dash line shows the reflectivity of the absorber without the SRR inclusions. Green curves show the simulated reflectivity of the SRR absorber.

Fig. 3
Fig. 3

Photographs of the experimental prototypes: (a) SRRs and (b) the MM based absorber.

Fig. 4
Fig. 4

Surface current distributions of the absorber at the two absorption frequencies of (a) 5.9 GHz and (b) 6.7 GHz.

Fig. 5
Fig. 5

Normalized complex impedance of the metal-backed MM substrate: (a) Incident electric field propagates along the x-axis direction. The MM substrates with L1 = 9.0 mm and L1 = 11.2 mm are also presented. (b) Incident electric field propagates along the y-axis direction. Inserts show the equivalent circuit model of imaginary part of the complex impedance.

Metrics