Abstract

We demonstrate a record QAM multiplicity of 1024 levels in a single-carrier coherent transmission. A frequency-domain equalization technique and a back-propagation method are adopted to compensate for distortions caused by hardware imperfections and fiber impairments, respectively. As a result, 60 Gbit/s polarization-multiplexed transmission over 150-km has been achieved at 3 Gsymbol/s within an optical bandwidth of only 4.05 GHz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Transmission Technologies (Springer, 2010).
  2. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.
  3. S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” ECOC 2010, PD2.3.
  4. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
    [CrossRef] [PubMed]
  5. M. -F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” OECC 2011, PDP1.
  6. H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag. 33(2), 100–109 (1995).
    [CrossRef]
  7. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [CrossRef] [PubMed]
  8. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
    [CrossRef]
  9. H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans. 47, 617–644 (1928).
  10. S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Tech. J. 52, 843–874 (1973).
  11. K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “1 Gsymbol/s, 64 QAM coherent optical transmission with a spectral efficiency of 8 bit/s/Hz using a Nyquist filter,” OECC2007, PD1–1.
  12. R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
    [CrossRef]
  13. K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
    [CrossRef]
  14. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, “Stability of solitons in randomly varying birefringent fibers,” Opt. Lett. 16(16), 1231–1233 (1991).
    [CrossRef] [PubMed]
  15. J. G. Proakis, Digital Communications, 4th ed. (New York: McGraw Hill, 2000).

2012 (1)

2007 (1)

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[CrossRef]

2006 (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[CrossRef]

1996 (1)

1995 (1)

H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag. 33(2), 100–109 (1995).
[CrossRef]

1991 (1)

1988 (1)

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[CrossRef]

1973 (1)

S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Tech. J. 52, 843–874 (1973).

1928 (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans. 47, 617–644 (1928).

Bäuerle, B.

Bélanger, P.-A.

Chen, H. H.

Dippon, T.

Doran, N. J.

Flory, C. A.

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[CrossRef]

Freude, W.

Hillerkuss, D.

Hongo, J.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[CrossRef]

Jeanclaude, I.

H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag. 33(2), 100–109 (1995).
[CrossRef]

Jungerman, R. L.

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[CrossRef]

Karam, G.

H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag. 33(2), 100–109 (1995).
[CrossRef]

Kasai, K.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[CrossRef]

Kleinow, P.

Koos, C.

Leuthold, J.

Menyuk, C. R.

Nakazawa, M.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[CrossRef]

Nebendahl, B.

Nyquist, H.

H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans. 47, 617–644 (1928).

Paré, C.

Personick, S. D.

S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Tech. J. 52, 843–874 (1973).

Sari, H.

H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag. 33(2), 100–109 (1995).
[CrossRef]

Schindler, P. C.

Schmogrow, R.

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[CrossRef]

Villeneuve, A.

Wai, P. K. A.

Winter, M.

Wolf, S.

Yoshida, M.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[CrossRef]

AIEE Trans. (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans. 47, 617–644 (1928).

Appl. Phys. Lett. (1)

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[CrossRef]

Bell Syst. Tech. J. (1)

S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Tech. J. 52, 843–874 (1973).

IEEE Commun. Mag. (1)

H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag. 33(2), 100–109 (1995).
[CrossRef]

IEICE Electron. Express (2)

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (6)

J. G. Proakis, Digital Communications, 4th ed. (New York: McGraw Hill, 2000).

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “1 Gsymbol/s, 64 QAM coherent optical transmission with a spectral efficiency of 8 bit/s/Hz using a Nyquist filter,” OECC2007, PD1–1.

M. -F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” OECC 2011, PDP1.

M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Transmission Technologies (Springer, 2010).

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” ECOC 2010, PD2.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for 1024 QAM (60 Gbit/s) coherent transmission over 150 km.

Fig. 2
Fig. 2

E/O frequency response of IQ modulator. (a) 6 GHz span, (b) 300 MHz span.

Fig. 3
Fig. 3

RF spectrum of demodulated QAM signal after 150 km transmission.

Fig. 4
Fig. 4

Optical spectra of 1024 QAM signal. (a) Back-to-back, (b) After 150 km transmission.

Fig. 5
Fig. 5

Single side-band (SSB) noise power spectrum of a heterodyne beat note between LO and pilot tone after 150 km transmission.

Fig. 6
Fig. 6

Constellation diagrams of 1024 QAM signal under back-to-back condition with distortion compensation by using FIR filter (a) and FDE (b).

Fig. 7
Fig. 7

BER after 150 km transmission versus fiber launched power without and with digital nonlinear compensation using back-propagation method.

Fig. 8
Fig. 8

Constellation diagram of 1024 QAM signal after 150 km transmission without and with digital nonlinear compensation using back-propagation method.

Fig. 9
Fig. 9

BER characteristics of 1024 QAM, 60 Gbit/s transmission.

Metrics