Abstract

Random lasing in nanocrystalline Nd3+:YVO4 powder is demonstrated. A method that analyzes the decay kinetics after long-pulse excitation is used to determine the laser characteristics. This method permits to measure the fractional contribution of spontaneous and stimulated emission as well as upconversion as a function of the pump intensity. We observed that maximum linewidth narrowing is achieved when the stimulated emission reaches 50% of fractional contribution in the backscattering cone.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “Generation of ultrashort light pulses in laser with nonlinear absorbent,” Sov. Phys. JETP 26, 835–840 (1968).
  2. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, “Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders,” J. Opt. Soc. Am. B 10(12), 2358–2363 (1993).
    [CrossRef]
  3. B. Li and S. C. Rand, “Continuous-wave ampli□cation and light storage in optically and electrically pumped random laser media,” J. Opt. Soc. Am. B 24(4), 799–807 (2007).
    [CrossRef]
  4. D. S. Wiersman, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  5. Y. Feng, S. Huang, G. Qin, M. Musha, and K. I. Ueda, “Random microchip laser,” Opt. Express 13(1), 121–126 (2005).
    [CrossRef] [PubMed]
  6. Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
    [CrossRef]
  7. M. A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, “Neodymium random lasers operating in different pumping regimes,” J. Mod. Opt. 51(16-18), 2543–2553 (2004).
    [CrossRef]
  8. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80(5), 055803 (2009).
    [CrossRef]
  9. M. A. Noginov, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, “Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals,” J. Opt. Soc. Am. B 13(9), 2024–2033 (1996).
    [CrossRef]
  10. J. Azkargorta, M. Bettinelli, I. Iparraguirre, S. Garcia-Revilla, R. Balda, and J. Fernández, “Random lasing in Nd:LuVO4 crystal powder,” Opt. Express 19(20), 19591–19599 (2011).
    [CrossRef] [PubMed]
  11. M. Bahoura, K. J. Morris, G. Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” IEEE J. Quantum Electron. 41(5), 677–685 (2005).
    [CrossRef]
  12. B. A. van Tiggelen, D. S. Wiersma, and A. Lagendijk, “Self-consistent Theory for the Enhancement Factor in Coherent Backscattering,” Europhys. Lett. 30(1), 1–6 (1995).
    [CrossRef]
  13. B. Michel, “Mie Calc-freely configurable, on-line program for light scattering calculations (Mie theory),” http://www.lightscattering.de/MieCalc/eindex.html .
  14. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
    [CrossRef] [PubMed]
  15. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
    [CrossRef]
  16. A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32(12), 1307–1317 (2000).
    [CrossRef]
  17. C. Jacinto, S. L. Oliveira, T. Catundab, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express 13(6), 2040–2046 (2005).
    [CrossRef] [PubMed]
  18. X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
    [CrossRef]
  19. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [CrossRef]
  20. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
    [CrossRef]

2011 (1)

2009 (2)

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80(5), 055803 (2009).
[CrossRef]

2008 (1)

D. S. Wiersman, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

2007 (1)

2005 (3)

2004 (2)

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

M. A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, “Neodymium random lasers operating in different pumping regimes,” J. Mod. Opt. 51(16-18), 2543–2553 (2004).
[CrossRef]

2000 (2)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32(12), 1307–1317 (2000).
[CrossRef]

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[CrossRef]

1996 (2)

1995 (1)

B. A. van Tiggelen, D. S. Wiersma, and A. Lagendijk, “Self-consistent Theory for the Enhancement Factor in Coherent Backscattering,” Europhys. Lett. 30(1), 1–6 (1995).
[CrossRef]

1993 (1)

1968 (1)

V. S. Letokhov, “Generation of ultrashort light pulses in laser with nonlinear absorbent,” Sov. Phys. JETP 26, 835–840 (1968).

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[CrossRef]

Andrade, A. A.

Auzel, F.

Azkargorta, J.

Bahoura, M.

M. Bahoura, K. J. Morris, G. Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” IEEE J. Quantum Electron. 41(5), 677–685 (2005).
[CrossRef]

Balda, R.

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[CrossRef]

Bettinelli, M.

Bisson, J.-F.

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Catundab, T.

Caulfield, H. J.

Chen, D. Y.

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

Chen, F.

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

Feng, Y.

Y. Feng, S. Huang, G. Qin, M. Musha, and K. I. Ueda, “Random microchip laser,” Opt. Express 13(1), 121–126 (2005).
[CrossRef] [PubMed]

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Fernández, J.

Fowlkes, I.

M. A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, “Neodymium random lasers operating in different pumping regimes,” J. Mod. Opt. 51(16-18), 2543–2553 (2004).
[CrossRef]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Gao, J.

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

Garcia-Revilla, S.

Gouedard, C.

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[CrossRef]

Huang, S.

Y. Feng, S. Huang, G. Qin, M. Musha, and K. I. Ueda, “Random microchip laser,” Opt. Express 13(1), 121–126 (2005).
[CrossRef] [PubMed]

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Husson, D.

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[CrossRef]

Iparraguirre, I.

Jacinto, C.

Lagendijk, A.

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80(5), 055803 (2009).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[CrossRef]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[CrossRef] [PubMed]

B. A. van Tiggelen, D. S. Wiersma, and A. Lagendijk, “Self-consistent Theory for the Enhancement Factor in Coherent Backscattering,” Europhys. Lett. 30(1), 1–6 (1995).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, “Generation of ultrashort light pulses in laser with nonlinear absorbent,” Sov. Phys. JETP 26, 835–840 (1968).

Li, B.

Li, X. D.

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

Lu, J.

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Mahdi, M.

Migus, A.

Morris, K. J.

M. Bahoura, K. J. Morris, G. Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” IEEE J. Quantum Electron. 41(5), 677–685 (2005).
[CrossRef]

Mosk, A. P.

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80(5), 055803 (2009).
[CrossRef]

Musha, M.

Y. Feng, S. Huang, G. Qin, M. Musha, and K. I. Ueda, “Random microchip laser,” Opt. Express 13(1), 121–126 (2005).
[CrossRef] [PubMed]

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Myers, J. D.

Myers, M. J.

Noginov, M. A.

M. Bahoura, K. J. Morris, G. Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” IEEE J. Quantum Electron. 41(5), 677–685 (2005).
[CrossRef]

M. A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, “Neodymium random lasers operating in different pumping regimes,” J. Mod. Opt. 51(16-18), 2543–2553 (2004).
[CrossRef]

M. A. Noginov, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, “Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals,” J. Opt. Soc. Am. B 13(9), 2024–2033 (1996).
[CrossRef]

Noginova, N. E.

Novak, J.

M. A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, “Neodymium random lasers operating in different pumping regimes,” J. Mod. Opt. 51(16-18), 2543–2553 (2004).
[CrossRef]

Oliveira, S. L.

Ostroumov, V.

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Qin, G.

Rand, S. C.

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[CrossRef]

Sauteret, C.

Sennaroglu, A.

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32(12), 1307–1317 (2000).
[CrossRef]

Shirakawa, A.

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Takaichi, K.

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Thompson, T.

Ueda, K. I.

Ueda, K.-I.

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80(5), 055803 (2009).
[CrossRef]

van Tiggelen, B. A.

B. A. van Tiggelen, D. S. Wiersma, and A. Lagendijk, “Self-consistent Theory for the Enhancement Factor in Coherent Backscattering,” Europhys. Lett. 30(1), 1–6 (1995).
[CrossRef]

Venkateswarlu, P.

Wiersma, D. S.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[CrossRef]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[CrossRef] [PubMed]

B. A. van Tiggelen, D. S. Wiersma, and A. Lagendijk, “Self-consistent Theory for the Enhancement Factor in Coherent Backscattering,” Europhys. Lett. 30(1), 1–6 (1995).
[CrossRef]

Wiersman, D. S.

D. S. Wiersman, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Yu, J. H.

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

Yu, X.

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

Zhu, G.

M. Bahoura, K. J. Morris, G. Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” IEEE J. Quantum Electron. 41(5), 677–685 (2005).
[CrossRef]

M. A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, “Neodymium random lasers operating in different pumping regimes,” J. Mod. Opt. 51(16-18), 2543–2553 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Feng, J.-F. Bisson, J. Lu, S. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K.-I. Ueda, “Thermal effects in quasi-continuous-wave Nd3+:Y3Al5O12 nanocrystalline-powder random laser,” Appl. Phys. Lett. 84(7), 1040–1042 (2004).
[CrossRef]

Europhys. Lett. (1)

B. A. van Tiggelen, D. S. Wiersma, and A. Lagendijk, “Self-consistent Theory for the Enhancement Factor in Coherent Backscattering,” Europhys. Lett. 30(1), 1–6 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Bahoura, K. J. Morris, G. Zhu, and M. A. Noginov, “Dependence of the neodymium random laser threshold on the diameter of the pumped spot,” IEEE J. Quantum Electron. 41(5), 677–685 (2005).
[CrossRef]

J. Chem. Phys. (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[CrossRef]

J. Mod. Opt. (1)

M. A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, “Neodymium random lasers operating in different pumping regimes,” J. Mod. Opt. 51(16-18), 2543–2553 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

Laser Phys. Lett. (1)

X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under CW 808 nm diode-laser pumping,” Laser Phys. Lett. 6(2), 125–128 (2009).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersman, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Nature (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[CrossRef]

Opt. Express (3)

Opt. Quantum Electron. (1)

A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave diode-pumped Nd:YVO4 laser at 1064 nm,” Opt. Quantum Electron. 32(12), 1307–1317 (2000).
[CrossRef]

Phys. Rev. A (1)

K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80(5), 055803 (2009).
[CrossRef]

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion system,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of ultrashort light pulses in laser with nonlinear absorbent,” Sov. Phys. JETP 26, 835–840 (1968).

Other (1)

B. Michel, “Mie Calc-freely configurable, on-line program for light scattering calculations (Mie theory),” http://www.lightscattering.de/MieCalc/eindex.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Distribution of powder particles versus the diameter from the Nd:YVO4 nanopowder sample, obtained by the laser diffraction technique (range: 0.1 to 10μm).

Fig. 2
Fig. 2

(a) Disk-like sample confined by microscope slides. The line at the center of the disk (arrow) is due to visible emission from the upconversion process. (b) SEM image from the extremity of the sample. (c) SEM image from the center of the sample.

Fig. 3
Fig. 3

Experimental setup: The 809 nm diode beam is first shaped by two cylindrical lenses with focal lengths of −13 mm and −25 mm, respectively, and then focused on the sample with a spherical f = 20mm lens. The backscattering cone (BC) was separated from the pump excitation by a beam splitter (BS) and captured by fiber coupled detectors.

Fig. 4
Fig. 4

(a) Beam waist measured in horizontal and vertical direction at the sample position as a function of distance from the focusing lens. (b) Beam profile observed with focusing lens at 26 mm and (c) at 35 mm.

Fig. 5
Fig. 5

(a) Backscattered cone of 1064 nm emission, obtained using a CCD digital camera. (b) Simulation of the coherent backscattered emission from this sample.

Fig. 6
Fig. 6

(a) Emission spectra as a function of pump intensity. (b) Linewidth narrowing of the 4F3/24I11/2 emission. (c) Normalized emission intensity from optically excited Nd3+:YVO4 nanopowder at five wavelengths versus the incident laser power. Only the 1064 nm emission has an exponential increase.

Fig. 7
Fig. 7

(a) Laser pulse decay and fit with one exponential for a pump intensity of 2.7 W/mm2. (b) Laser pulse decay and fit with two exponentials for a pump intensity of 16.8 W/mm2

Fig. 8
Fig. 8

Linewidth narrowing and fraction of stimulated emission at 1064 nm versus the pump power. The double arrows show that at a pump intensity of 15 W/mm2 maximum linewidth narrowing is achieved and at the same time 50% of stimulated emission is detected.

Fig. 9
Fig. 9

(a) Determination of the radiative lifetime of the 4F3/24I11/2transition for a Nd:YVO4 bulk with 3 mm thickness. Fitting curve made with a third order polynomial. (b) Integrated lifetime at the center of the compressed pellet.

Fig. 10
Fig. 10

(a) 4F3/24I11/2 spontaneous transition decay and fit with Eq. (3) for a pump intensity of 8.3W/mm2 (b) spectra of up-conversion emissions. (c) Saturation of the up-conversion rate as a function of the pump intensity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I( t )=A e ( t τ 1 ) +B e ( t τ 2 )
I( t )=B e ( t τ i ) e ( γ t )
τ int = 1 B 0 I( t ) dt
W UP ( s 1 )=1/ τ int 1/ τ i

Metrics