Abstract

We propose a surface plasmon polarization-controlled beam splitter based on plasmonic slot waveguides (PSWs). It couples light of different polarizations from a silicon nanowire into multilevel plasmonic networks. Two orthogonal PSWs are utilized as the guiding waveguides for each polarization. The proposed structure overcomes inherent polarization limitation in plasmonic structures by providing multilevel optical signal processing. This ability of controlling polarization can be exploited to achieve 3-D multilevel plasmonic circuits and polarization controlled chip to chip channel. Our device is of a compact size and a wide band operation. The device utilizes both quasi-TE and quasi-TM polarizations to allow for increased optical processing capability. The crosstalk is minimal between the two polarizations propagating in two different levels. We achieve good transmission efficiency at a wavelength of 1.55 µm for different polarizations. We analyze and simulate the structure using the FDTD method. The proposed device can be utilized in integrated chips for optical signal processing and optical computations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  2. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
    [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  5. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
    [CrossRef]
  6. M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
    [CrossRef]
  7. S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
    [CrossRef]
  8. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
    [CrossRef]
  9. C. J. Brooks, A. P. Knights, and P. E. Jessop, “Vertically-integrated multimode interferometer coupler for 3D photonic circuits in SOI,” Opt. Express19(4), 2916–2921 (2011).
    [CrossRef] [PubMed]
  10. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  11. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
    [CrossRef]
  12. Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
    [CrossRef]
  13. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006).
    [CrossRef] [PubMed]
  14. H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
    [CrossRef]
  15. C. Y. Tai, S. H. Chang, and T. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton wave,” J. Opt. Soc. Am. A25(8), 1387–1392 (2008).
    [CrossRef]
  16. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett.36(18), 3630–3632 (2011).
    [CrossRef] [PubMed]
  17. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
    [CrossRef] [PubMed]
  18. T. Yamazaki, J. Yamauchi, and H. Nakano, “A branch-type TE/TM wave splitter using a light-guiding metal line,” J. Lightwave Technol.25(3), 922–928 (2007).
    [CrossRef]
  19. J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
    [CrossRef]
  20. M. Alam, J. S. Aitchsion, and M. Mojahedi, “Compact hybrid TM-pass polarizer for silicon-on-insulator platform,” Appl. Opt.50(15), 2294–2298 (2011).
    [CrossRef] [PubMed]
  21. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
    [CrossRef]
  22. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011).
    [CrossRef] [PubMed]
  23. B. Lau, M. A. Swillam, and A. S. Helmy, “Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers,” Opt. Express18(26), 27048–27059 (2010).
    [CrossRef] [PubMed]
  24. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
    [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  26. F. D. T. D. Lumerical, Lumerical Soultions, Inc. http://www.lumerical.com .
  27. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero lossess at sharp bends,” Opt. Express30, 1186–1188 (2005).
  28. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007), Chap. 2.

2011

2010

2008

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

C. Y. Tai, S. H. Chang, and T. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton wave,” J. Opt. Soc. Am. A25(8), 1387–1392 (2008).
[CrossRef]

2007

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

T. Yamazaki, J. Yamauchi, and H. Nakano, “A branch-type TE/TM wave splitter using a light-guiding metal line,” J. Lightwave Technol.25(3), 922–928 (2007).
[CrossRef]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
[CrossRef]

2006

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006).
[CrossRef] [PubMed]

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero lossess at sharp bends,” Opt. Express30, 1186–1188 (2005).

2004

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

2003

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

2002

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

2001

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

1999

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Aitchsion, J. S.

Alam, M.

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

Barnett, B. C.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Block, B. A.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Bowers, J. E.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

Brooks, C. J.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Cadien, K.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Chang, S. H.

C. Y. Tai, S. H. Chang, and T. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton wave,” J. Opt. Soc. Am. A25(8), 1387–1392 (2008).
[CrossRef]

Chen, A.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Chen, S.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
[CrossRef]

Chen, X. D.

Chiu, T.

C. Y. Tai, S. H. Chang, and T. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton wave,” J. Opt. Soc. Am. A25(8), 1387–1392 (2008).
[CrossRef]

Chuyanov, V.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Cui, J. M.

Dagli, N.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

Dalton, L. R.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Dong, C. H.

Fan, S.

Fukuda, H.

Gao, J.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

Garner, S. N.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero lossess at sharp bends,” Opt. Express30, 1186–1188 (2005).

Guo, G. C.

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett.36(18), 3630–3632 (2011).
[CrossRef] [PubMed]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Han, Z. F.

C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett.36(18), 3630–3632 (2011).
[CrossRef] [PubMed]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

Helmy, A. S.

Hirayama, K.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Itabashi, S.

Jessop, P. E.

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011).
[CrossRef] [PubMed]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Kiesel, N.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

Kim, K. C.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Kim, P. S.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Kim, S. I.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Knights, A. P.

Kobrinsky, M. J.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Kwong, D.-L.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
[CrossRef]

Lau, B.

Lee, S.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Lin, X. M.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

List, S.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Liu, B.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

Lo, G.-Q.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

Mohammed, E.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Mojahedi, M.

Morita, Y.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

Nakano, H.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Oh, C.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Okuno, Y.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Park, S.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero lossess at sharp bends,” Opt. Express30, 1186–1188 (2005).

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Raburn, M.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Rauscher, K.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

Ren, X. F.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

Reshotko, M.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Robertson, F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Schmid, C.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Song, S. H.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Steier, W. H.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Sun, F. W.

Swillam, M. A.

Tai, C. Y.

C. Y. Tai, S. H. Chang, and T. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton wave,” J. Opt. Soc. Am. A25(8), 1387–1392 (2008).
[CrossRef]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011).
[CrossRef] [PubMed]

Tsuchizawa, T.

Tsuji, Y.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Ursin, R.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
[CrossRef] [PubMed]

Veronis, G.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011).
[CrossRef] [PubMed]

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Weber, U.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
[CrossRef] [PubMed]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011).
[CrossRef] [PubMed]

Weinfurter, H.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
[CrossRef] [PubMed]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Won, H. S.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Xiao, Y. F.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011).
[CrossRef] [PubMed]

Yacoubian, A.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

Yamada, K.

Yamauchi, J.

Yamazaki, T.

Yang, Y.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

Young, I.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Zhang, H.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
[CrossRef]

Zhang, J.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
[CrossRef]

Zheng, J.-F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

Zhu, S.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Zou, C. L.

Adv. Mater. (Deerfield Beach Fla.)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics- a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. S. Won, K. C. Kim, S. H. Song, C. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett.88(1), 011110 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional intergrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

IEEE J. Quantum Electron.

S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett.20(2), 93–95 (2008).
[CrossRef]

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett.23, 1606–1608 (2011).
[CrossRef]

Intel Technol. J.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On chip optical interconnects,” Intel Technol. J.8, 129–142 (2004).

J. Lightwave Technol.

J. Opt. Soc. Am. A

C. Y. Tai, S. H. Chang, and T. Chiu, “Numerical optimization of wide-angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton wave,” J. Opt. Soc. Am. A25(8), 1387–1392 (2008).
[CrossRef]

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Nat. Commun.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387 (2011).
[CrossRef] [PubMed]

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Nature

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70(4), 042314 (2004).
[CrossRef]

Phys. Rev. Lett.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

F. D. T. D. Lumerical, Lumerical Soultions, Inc. http://www.lumerical.com .

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

A 3-D plasmonic chip.

Fig. 2
Fig. 2

A plasmonic slot waveguide with air as the dielectric present in the slot.

Fig. 3
Fig. 3

Cross sectional view of the PSW demonstrating (a) Ex present in a plasmonic slot waveguide and (b) Ez present. The slot width is 50.0 nm.

Fig. 4
Fig. 4

The transmission plot for the direct coupling method for a slot width = 50.0 nm.

Fig. 5
Fig. 5

The proposed orthogonal polarization splitter configuration;(a) 3D view and (b) side view.

Fig. 6
Fig. 6

A wave-vector plot for the proposed 3D orthogonal polarization splitter. The kx and ky inside the dielectric waveguide are more closely matched to kspp than kz.

Fig. 7
Fig. 7

The structure of the rotated polarization splitter that couples each polarization to a different layer.

Fig. 8
Fig. 8

The two excitation source modes. x-polarization (a) and y-polarization (b).

Fig. 9
Fig. 9

Electric fields intensity plots in port 1 when excited with a y-polarized wave at 1.55 µm.

Fig. 10
Fig. 10

Electric fields intensity plots in port 2 when excited with an x-polarized wave at 1.55 µm.

Fig. 11
Fig. 11

The transmission efficiency for the orthogonal polarization splitter when excited with a y-polarized mode; (Diamond-Green) is the transmission along port 1, (Circle-Blue) is the transmission efficiency along port 2, (Dotted-Red) is the absorption in the metal, and (Cross-Black) is the reflection from the junction.

Fig. 12
Fig. 12

The transmission efficiency for the orthogonal polarization splitter when excited with an x-polarized mode; (Diamond-Green) is the transmission along port 1, (Circle-Blue) is the transmission efficiency along port 2, (Dotted-Red) is the absorption in the metal, and (Cross-Black) is the reflection from the junction.

Fig. 13
Fig. 13

The extinction ratio for the orthogonal polarization splitter calculated for port 1 (Dotted-Red) and for port 2 (Star-Blue).

Fig. 14
Fig. 14

The transmission efficiency for the rotated polarization splitter when excited with a y-polarized mode; (Diamond-Green) is the transmission along port 1 for silver, (Circle-Blue) is the transmission efficiency along Port 2 for silver, (X-Red) is the transmission along port 1 for aluminum, and (Star-Black) is the transmission along port 2 for aluminum.

Fig. 15
Fig. 15

The transmission efficiency for the rotated polarization splitter when excited with a x-polarized mode for the polarization rotator; (Diamond-Green) is the transmission along port 1 for silver, (Circle-Blue) is the transmission efficiency along port 2 for silver, (X-Red) is the transmission along port 1 for aluminum, and (Star-Black) is the transmission along port 2 for aluminum.

Fig. 16
Fig. 16

The extinction ratio for the rotated polarization splitter calculated for port 1 (dotted-red) and for port 2 (Star-blue) using silver material. (Cross-Green) and (Diamond-Black) are the extinction ratios for ports 1 and 2, respectively, estimated using aluminum.

Metrics