Abstract

Current technologies are fast approaching the capacity limit of single mode fibers (SMFs). Hollow-core photonic bandgap fibers (HC-PBGFs) are expected to provide attractive long-term solutions in terms of ultra-low fiber nonlinearities associated with the possibility of mode scaling, thus enabling mode division multiplexing (MDM). In this work, we demonstrate MDM over a HC-PBGF for the first time. Two 10.7 Gbps channels are simultaneously transmitted over two modes of a 30-m long 7-cell HC-PBGF. Bit error ratio (BER) performances below the FEC threshold limit (3.3 × 10−3) are shown for both data channels when the two modes are transmitted simultaneously. No power penalty and up to 3 dB power penalty at a BER of 10−9 are measured for single mode transmission using the fundamental and the LP11 mode, respectively. The performance of this exploratory demonstration is expected to improve significantly if advanced mode launching and detection methods are used.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Schöllmann, N. Schrammar, and W. Rosenkranz, “Experimental realisation of 3×3 MIMO system with mode group diversity multiplexing limited by modal noise,” in the Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA68.
  2. C. P. Tsekrekos, M. de Boer, A. Martinez, F. M. J. Willems, and A. M. J. Koonen, “Demonstration of a Transparent 2-Input 2-Output Mode Group Diversity Multiplexing Link,” in the European Conference on Optical Communications (Cannes, France, 2006), paper We3.P.145.
  3. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in the Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.
  4. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
    [CrossRef] [PubMed]
  5. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
    [CrossRef] [PubMed]
  6. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [CrossRef]
  7. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
    [CrossRef] [PubMed]
  8. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
    [CrossRef] [PubMed]
  9. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 µm,” Opt. Express 17(26), 23468–23473 (2009).
    [CrossRef] [PubMed]
  10. http://nktphotonics.com/files/files/HC-1550-04-100409.pdf
  11. B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper PD24.
  12. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  13. C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett. 41(1), 27–29 (2005).
    [CrossRef]
  14. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
    [CrossRef] [PubMed]
  15. B. Mangan, J. K. Lyngsø, and P. J. Roberts, “Realization of low loss and polarization maintaining hollow core photonic crystal fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JFG4.
  16. http://www.jcmwave.com
  17. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
    [CrossRef] [PubMed]
  18. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
    [CrossRef] [PubMed]
  19. K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12(3), 394–400 (2004).
    [CrossRef] [PubMed]
  20. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, and A. Risteski, “Modeling and simulation of next-generation multimode fiber links,” J. Lightwave Technol. 21(5), 1242–1255 (2003).
    [CrossRef]
  21. V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1-6), 229–237 (2004).
    [CrossRef]
  22. N. V. Wheeler, M. N. Petrovich, R. Slavik, N. K. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. Gray, F. Poletti, and D. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5A.2.

2012

2011

2009

2008

2006

2005

2004

2003

Abdolvand, A.

Al Amin, A.

Allan, D.

Astruc, M.

Bai, N.

Bickham, S.

Bigo, S.

Bird, D. M.

Birks, T. A.

Bolle, C.

Borrelli, N.

Boutin, A.

Brindel, P.

Burrows, E. C.

Cerou, F.

Charlet, G.

Chen, J. S. Y.

Chen, S.

Chen, X.

Couny, F.

Daria, V. R.

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1-6), 229–237 (2004).
[CrossRef]

Esmaeelpour, M.

Essiambre, R.-J.

Euser, T. G.

Farr, L.

Gao, G.

Glückstad, J.

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1-6), 229–237 (2004).
[CrossRef]

Gnauck, A. H.

Golowich, S. E.

Hansen, T. P.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett. 41(1), 27–29 (2005).
[CrossRef]

Huang, Y.-K.

Ip, E.

Jakobsen, C.

Jeppesen, P.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett. 41(1), 27–29 (2005).
[CrossRef]

John Rodrigo, P.

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1-6), 229–237 (2004).
[CrossRef]

Kaminski, C. F.

Knight, J. C.

Koch, K.

Koebele, C.

Kolesar, P.

Koshiba, M.

Lau, A. P. T.

Li, A.

Li, G.

Li, M.-J.

Liñares, J.

Lingle, R.

Lu, C.

Luo, Y.

Lyngsø, J. K.

Man Chung, K.

Mangan, B. J.

Mardoyan, H.

Mason, M. W.

Mateo, E.

McCurdy, A. H.

Montero, C.

Moreno, V.

Mortensen, N.

Mumtaz, S.

Nold, J.

Peckham, D. W.

Peng, G.-D.

Pepeljugoski, P.

Petrovich, M. N.

Peucheret, C.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett. 41(1), 27–29 (2005).
[CrossRef]

Poletti, F.

Prieto, X.

Provost, L.

Randel, S.

Richardson, D. J.

Risteski, A.

Ritger, A. J.

Roberts, P. J.

Ryf, R.

Sabert, H.

Saitoh, K.

Salsi, M.

Scharrer, M.

Shieh, W.

Sierra, A.

Sillard, P.

Smith, C.

Sperti, D.

St. J. Russell, P.

Tam, H.-Y.

Ten, S.

Tomlinson, A.

Tran, P.

Tse, V.

van Brakel, A.

Verluise, F.

Wang, T.

West, J.

Whyte, G.

Williams, D. P.

Winzer, P. J.

Yaman, F.

Zsigri, B.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett. 41(1), 27–29 (2005).
[CrossRef]

Electron. Lett.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett. 41(1), 27–29 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1-6), 229–237 (2004).
[CrossRef]

Opt. Express

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
[CrossRef] [PubMed]

J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
[CrossRef] [PubMed]

K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12(3), 394–400 (2004).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[CrossRef] [PubMed]

N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
[CrossRef] [PubMed]

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[CrossRef] [PubMed]

J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 µm,” Opt. Express 17(26), 23468–23473 (2009).
[CrossRef] [PubMed]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[CrossRef] [PubMed]

C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[CrossRef] [PubMed]

Other

S. Schöllmann, N. Schrammar, and W. Rosenkranz, “Experimental realisation of 3×3 MIMO system with mode group diversity multiplexing limited by modal noise,” in the Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA68.

C. P. Tsekrekos, M. de Boer, A. Martinez, F. M. J. Willems, and A. M. J. Koonen, “Demonstration of a Transparent 2-Input 2-Output Mode Group Diversity Multiplexing Link,” in the European Conference on Optical Communications (Cannes, France, 2006), paper We3.P.145.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in the Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

http://nktphotonics.com/files/files/HC-1550-04-100409.pdf

B. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and R. S. J. Philip, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper PD24.

B. Mangan, J. K. Lyngsø, and P. J. Roberts, “Realization of low loss and polarization maintaining hollow core photonic crystal fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JFG4.

http://www.jcmwave.com

N. V. Wheeler, M. N. Petrovich, R. Slavik, N. K. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. Gray, F. Poletti, and D. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5A.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) In plane vector field representation of the four modes in the LP11 manifold. (b) Superpositions of modes contributing to the LP11a and LP11b modes.

Fig. 2
Fig. 2

Calculated dispersion profiles of the modes in the LP11 manifold. The inset shows a scanning electron microscope (SEM) picture of the cross section of the 7-cell HC-PBGF.

Fig. 3
Fig. 3

(a) Schematic view of the two-mode multiplexing and demultiplexing method. (b)-(d) Mode profiles captured by the camera and corresponding to the LP01, LP11a, and LP11b modes, respectively.

Fig. 4
Fig. 4

(a) Calculated coupling efficiency between tapered SMF and HC-PBGF for the LP01 (dashed) and LP11 modes (solid lines) as a function of normalized radial offset with respect to the core centre. (b) Extinction ratio, defined as the ratio of the coupling efficiencies to the LP11 and LP01 modes, as a function of radial offset. The radial offset is normalized to the core radius of the HC-PBGF.

Fig. 5
Fig. 5

(a) Simulated out-coupling efficiency as a function of radial offset and Gaussian beam waist. (b) and (c) Simulated and experimental contour plots of extinction ratio for detecting the LP11a mode, respectively. The X and Z directions are shown in Fig. 3(a).

Fig. 6
Fig. 6

Experimental setup for system evaluation.

Fig. 7
Fig. 7

Eye diagrams at the HC-PBGF output for (a) the LP11a mode when the LP11b mode is off, (b) the LP11a mode when the LP11b mode is on, (c) the fundamental mode. (d) BER performance for single mode (LP01, LP11a or LP11b, solid symbols) as well as multimode (LP11a and LP11b, open symbols) transmission.

Metrics