Abstract

We demonstrate an in-fiber gas phase chemical detection architecture in which a chemiluminescent (CL) reaction is spatially and spectrally matched to the core modes of hollow photonic bandgap (PBG) fibers in order to enhance detection efficiency. A peroxide-sensitive CL material is annularly shaped and centered within the fiber’s hollow core, thereby increasing the overlap between the emission intensity and the intensity distribution of the low-loss fiber modes. This configuration improves the sensitivity by 0.9 dB/cm compared to coating the material directly on the inner fiber surface, where coupling to both higher loss core modes and cladding modes is enhanced. By integrating the former configuration with a custom-built optofluidic system designed for concomitant controlled vapor delivery and emission measurement, we achieve a limit-of-detection of 100 parts per billion (ppb) for hydrogen peroxide vapor. The PBG fibers are produced by a new fabrication method whereby external gas pressure is used as a control knob to actively tune the transmission bandgaps through the entire visible range during the thermal drawing process.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tai, H. Tanaka, and T. Yoshino, “Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392--µm line of a He-Ne laser,” Opt. Lett. 12(6), 437–439 (1987).
    [CrossRef] [PubMed]
  2. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
    [CrossRef]
  3. J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt 19(3), 211–227 (2000).
    [CrossRef]
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sörensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [CrossRef] [PubMed]
  5. A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1263–1267 (2011).
    [CrossRef] [PubMed]
  6. T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature 382(6593), 697–700 (1996).
    [CrossRef] [PubMed]
  7. P. Yeh, A. Yariv, and E. J. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  8. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [CrossRef] [PubMed]
  9. P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
    [CrossRef]
  10. Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
    [CrossRef] [PubMed]
  11. M. S. Meaney and V. L. McGuffin, “Luminescence-based methods for sensing and detection of explosives,” Anal. Bioanal. Chem. 391(7), 2557–2576 (2008).
    [CrossRef] [PubMed]
  12. S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
    [CrossRef] [PubMed]
  13. L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices,” Acc. Chem. Res. 41(12), 1596–1608 (2008).
    [CrossRef] [PubMed]
  14. P. Scrimin and L. J. Prins, “Sensing through signal amplification,” Chem. Soc. Rev. 40(9), 4488–4505 (2011).
    [CrossRef] [PubMed]
  15. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [CrossRef] [PubMed]
  16. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
    [CrossRef]
  17. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
    [CrossRef] [PubMed]
  18. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
    [CrossRef] [PubMed]
  19. Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
    [CrossRef] [PubMed]
  20. D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20(6), 6029–6035 (2012).
    [CrossRef] [PubMed]
  21. R. Deans, A. Rose, K. M. Bardon, L. F. Hancock, and T. M. Swager, “Detection of explosives and other species,” Nomadics, Inc., U. S. Patent 7,799,573 B2 (2010).
  22. J.-S. Yang and T. M. Swager, “Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials,” J. Am. Chem. Soc. 120(21), 5321–5322 (1998).
    [CrossRef]
  23. J. A. Lind and G. L. Kok, “Henry’s law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,” J. Geophys. Res. 91(D7), 7889–7895 (1986).
    [CrossRef]
  24. F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
    [CrossRef] [PubMed]

2012 (2)

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20(6), 6029–6035 (2012).
[CrossRef] [PubMed]

2011 (2)

P. Scrimin and L. J. Prins, “Sensing through signal amplification,” Chem. Soc. Rev. 40(9), 4488–4505 (2011).
[CrossRef] [PubMed]

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1263–1267 (2011).
[CrossRef] [PubMed]

2010 (1)

2008 (3)

M. S. Meaney and V. L. McGuffin, “Luminescence-based methods for sensing and detection of explosives,” Anal. Bioanal. Chem. 391(7), 2557–2576 (2008).
[CrossRef] [PubMed]

L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices,” Acc. Chem. Res. 41(12), 1596–1608 (2008).
[CrossRef] [PubMed]

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

2007 (1)

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[CrossRef] [PubMed]

2004 (3)

2002 (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt 19(3), 211–227 (2000).
[CrossRef]

1999 (1)

1998 (2)

J.-S. Yang and T. M. Swager, “Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials,” J. Am. Chem. Soc. 120(21), 5321–5322 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

1997 (1)

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

1996 (1)

T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature 382(6593), 697–700 (1996).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

J. A. Lind and G. L. Kok, “Henry’s law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,” J. Geophys. Res. 91(D7), 7889–7895 (1986).
[CrossRef]

1978 (1)

Bayindir, M.

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1263–1267 (2011).
[CrossRef] [PubMed]

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
[CrossRef] [PubMed]

Benoit, G.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Bermel, P.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Bohrer, F. I.

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

Che, Y.

L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices,” Acc. Chem. Res. 41(12), 1596–1608 (2008).
[CrossRef] [PubMed]

Chen, C.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Colesniuc, C. N.

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

Costero, A. M.

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

Culshaw, B.

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Dickinson, T. A.

T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature 382(6593), 697–700 (1996).
[CrossRef] [PubMed]

Engeness, T. D.

Fan, S.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20(6), 6029–6035 (2012).
[CrossRef] [PubMed]

Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
[CrossRef] [PubMed]

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[CrossRef] [PubMed]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Gil, S.

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

Hansen, T. P.

Harrington, J.

J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt 19(3), 211–227 (2000).
[CrossRef]

Hart, S. D.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Ibanescu, M.

Jacobs, S. A.

Jin, W.

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Joannepoulos, J. D.

Joannopoulos, J. D.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
[CrossRef] [PubMed]

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Johnson, S. G.

Joly, G. D.

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[CrossRef] [PubMed]

Kauer, J. S.

T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature 382(6593), 697–700 (1996).
[CrossRef] [PubMed]

Kok, G. L.

J. A. Lind and G. L. Kok, “Henry’s law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,” J. Geophys. Res. 91(D7), 7889–7895 (1986).
[CrossRef]

Kummel, A. C.

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

Kuriki, K.

Kuriki, Y.

Lane, P. A.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Lind, J. A.

J. A. Lind and G. L. Kok, “Henry’s law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,” J. Geophys. Res. 91(D7), 7889–7895 (1986).
[CrossRef]

Ludvigsen, H.

Marcos, M. D.

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

Marom, E. J.

Martínez-Máñez, R.

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

McGuffin, V. L.

M. S. Meaney and V. L. McGuffin, “Luminescence-based methods for sensing and detection of explosives,” Anal. Bioanal. Chem. 391(7), 2557–2576 (2008).
[CrossRef] [PubMed]

Meaney, M. S.

M. S. Meaney and V. L. McGuffin, “Luminescence-based methods for sensing and detection of explosives,” Anal. Bioanal. Chem. 391(7), 2557–2576 (2008).
[CrossRef] [PubMed]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Moore, J. S.

L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices,” Acc. Chem. Res. 41(12), 1596–1608 (2008).
[CrossRef] [PubMed]

Park, J.

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

Parra, M.

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

Peng, X.

Petersen, J. C.

Prins, L. J.

P. Scrimin and L. J. Prins, “Sensing through signal amplification,” Chem. Soc. Rev. 40(9), 4488–4505 (2011).
[CrossRef] [PubMed]

Ripin, D. J.

Ritari, T.

Ruff, Z.

Ruff, Z. M.

Salinas, Y.

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

Sancenón, F.

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

Schuller, I. K.

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

Scrimin, P.

P. Scrimin and L. J. Prins, “Sensing through signal amplification,” Chem. Soc. Rev. 40(9), 4488–4505 (2011).
[CrossRef] [PubMed]

Shapira, O.

Shemuly, D.

Simonsen, H. R.

Skorobogatiy, M.

Soljacic, M.

Sörensen, T.

Stewart, G.

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Stolyarov, A. M.

Swager, T. M.

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[CrossRef] [PubMed]

J.-S. Yang and T. M. Swager, “Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials,” J. Am. Chem. Soc. 120(21), 5321–5322 (1998).
[CrossRef]

Tai, H.

Tanaka, H.

Tapalian, C.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannepoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Thomas, S. W.

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[CrossRef] [PubMed]

Trogler, W. C.

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

Tuominen, J.

Viens, J.

Vural, M.

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1263–1267 (2011).
[CrossRef] [PubMed]

Walt, D. R.

T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature 382(6593), 697–700 (1996).
[CrossRef] [PubMed]

Wang, Z.

Wei, L.

Weisberg, O.

White, J.

T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature 382(6593), 697–700 (1996).
[CrossRef] [PubMed]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Yaman, M.

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1263–1267 (2011).
[CrossRef] [PubMed]

Yang, J.-S.

J.-S. Yang and T. M. Swager, “Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials,” J. Am. Chem. Soc. 120(21), 5321–5322 (1998).
[CrossRef]

Yariv, A.

Yeh, P.

Yildirim, A.

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1263–1267 (2011).
[CrossRef] [PubMed]

Yoshino, T.

Zang, L.

L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices,” Acc. Chem. Res. 41(12), 1596–1608 (2008).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

L. Zang, Y. Che, and J. S. Moore, “One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices,” Acc. Chem. Res. 41(12), 1596–1608 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1263–1267 (2011).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

M. S. Meaney and V. L. McGuffin, “Luminescence-based methods for sensing and detection of explosives,” Anal. Bioanal. Chem. 391(7), 2557–2576 (2008).
[CrossRef] [PubMed]

Chem. Rev. (1)

S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical sensors based on amplifying fluorescent conjugated polymers,” Chem. Rev. 107(4), 1339–1386 (2007).
[CrossRef] [PubMed]

Chem. Soc. Rev. (2)

Y. Salinas, R. Martínez-Máñez, M. D. Marcos, F. Sancenón, A. M. Costero, M. Parra, and S. Gil, “Optical chemosensors and reagents to detect explosives,” Chem. Soc. Rev. 41(3), 1261–1296 (2012).
[CrossRef] [PubMed]

P. Scrimin and L. J. Prins, “Sensing through signal amplification,” Chem. Soc. Rev. 40(9), 4488–4505 (2011).
[CrossRef] [PubMed]

Fiber Integr. Opt (1)

J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt 19(3), 211–227 (2000).
[CrossRef]

J. Am. Chem. Soc. (2)

F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, “Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors,” J. Am. Chem. Soc. 130(12), 3712–3713 (2008).
[CrossRef] [PubMed]

J.-S. Yang and T. M. Swager, “Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials,” J. Am. Chem. Soc. 120(21), 5321–5322 (1998).
[CrossRef]

J. Geophys. Res. (1)

J. A. Lind and G. L. Kok, “Henry’s law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,” J. Geophys. Res. 91(D7), 7889–7895 (1986).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nature (2)

T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, “A chemical-detecting system based on a cross-reactive optical sensor array,” Nature 382(6593), 697–700 (1996).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Other (1)

R. Deans, A. Rose, K. M. Bardon, L. F. Hancock, and T. M. Swager, “Detection of explosives and other species,” Nomadics, Inc., U. S. Patent 7,799,573 B2 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the new pneumatically tunable photonic bandgap (PBG) fiber drawing process. The brown arrow denotes the introduction of nitrogen gas pressure into the preform core during the thermally-induced scaling of the preform. The purple layers correspond to As2S3 glass and the yellow corresponds to polyetherimide (PEI). (b) The bandgap peak positions are plotted as a function of the fiber core diameter. In contrast to the normal drawing process in which the bandgap redshifts with increasing diameter, here the bandgap blueshifts with increasing diameter. The red curve is the center bandgap position calculated by the transfer matrix method. The full transmission bandgap spectra are shown on the right. The brown arrow denotes the increase in nitrogen pressure that is supplied to the preform core during the draw in order to achieve the desired effect of increasing the core diameter while blue-shifting the transmission bandgap. (c) A typical cutback measurement depicted for a fiber with a bandgap centered at 532 nm, demonstrating losses of 4.7 dB/m. (d) Scanning Electron Microscope (SEM) micrographs of a large core PBG fiber (left) fabricated with the described method and a zoomed view of the multilayer PBG structure lining the core (right).

Fig. 2
Fig. 2

(a) Schematic drawing demonstrating the principle of using a hollow core PBG fiber for CL detection of peroxide vapors. When peroxide (light blue spheres) interacts with the sensing material (green spheres), luminescence is generated and guided by the PBG structure along the fiber length to the distal end for detection. (b) The peak of the fiber transmission bandgap is selected to coincide with the peak of the CL in order to most efficiently capture and transmit the emitted light. (c) Schematic of the custom built optofluidic system used for controlled delivery of peroxide vapor into the fiber core and simultaneous measurement of the transmitted detection signal. The system components include: (1) optical detector, (2) outlet for connecting to a syringe pump, (3) hollow core PBG fiber (yellow) with peroxide sensing material (green) immobilized in the core, (4) extension pieces of variable lengths to accommodate different fiber lengths, (5) heating element (Minco) used to catalyze the CL reaction, (6) clamp used to compress the heating element against the casing which contains the fiber tip, (7) thermocouple used for monitoring the temperature, and (8) container with an aqueous peroxide solution of known concentration. (d) A plot depicting a typical measurement. When the syringe pump is turned on, peroxide vapor flows through the fiber core resulting in the rise of the CL signal, which reaches a plateau. The signal returns back to the baseline when the syringe pump is turned off. The displayed measurement is for a peroxide concentration of 1% (aqueous).

Fig. 3
Fig. 3

(a, top) Schematic of the detection configuration in which the CL material is coated directly on the inner fiber surface (conFig. 1). (a, bottom) Results of cutback measurements are the black points and the fit to the data is in red. (b, top) Schematic of the detection configuration in which the CL material is coated onto a hollow glass capillary which is fixed in the center of the fiber (conFig. 2). The bushing which holds the capillary is omitted in the drawing for clarity. In our setup, the peroxide vapor only flows through the capillary core and not around it. (b, bottom) Results of cutback measurements are the black points and the fit to the data is in red. Cutback measurements are performed for multiple samples in each configuration using the setup described in Fig. 2(c), with a peroxide concentration of 1% (aqueous). (c) The black points correspond to the ratio of the data presented in (a, bottom) and (b,bottom) and the blue curve is the ratio of the fits shown in red (Ib/Ia). The extrapolated ratio of 1.3 at 0 cm arises from the fact that part of the light coated on the PBG surface escapes to the cladding.

Fig. 4
Fig. 4

Sensitivity measurement for peroxide vapor performed using a 5.8 cm long fiber with the sensing material coated as in conFig. 2 (see Fig. 3(b, top)). The horizontal grey line at the bottom is the noise of the optical detector. The limit of detection is 100 ppb at SNR = 1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(z)= m A m e α m z = m A m e α m z dm
I(z)= m 1 m 2 I 0 m 2 m 1 e α 0 mz dm
I(z)= I 0 ( m 2 m 1 ) 1 α 0 z ( e m 1 α 0 z e m 2 α 0 z )

Metrics