Abstract

We present a dispersion engineered slow light silicon-based photonic crystal waveguide PIN modulator. Low-dispersion slow light transmission over 18nm bandwidth under the silica light line with a group index of 26.5 is experimentally confirmed. We investigate the variations of the modulator figure of merit, Vπ × L, as a function of the optical carrier wavelength over the bandwidth of the fundamental photonic crystal waveguide defect mode. A large signal operation with a record low maximum Vπ × L of 0.0464 V⋅mm over the low-dispersion optical spectral range is demonstrated. We also report the device operation at 2GHz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  2. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [CrossRef]
  3. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
    [CrossRef]
  4. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
    [CrossRef]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  6. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
    [CrossRef] [PubMed]
  7. H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48(2), 210–220 (2012).
    [CrossRef]
  8. J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
    [CrossRef]
  9. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008).
    [CrossRef] [PubMed]
  10. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  11. S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
    [CrossRef]
  12. S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
    [CrossRef] [PubMed]
  13. L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
    [CrossRef]
  14. A. Mekis and J. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19(6), 861–865 (2001).
    [CrossRef]
  15. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009).
    [CrossRef] [PubMed]
  16. A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
    [CrossRef]
  17. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
    [CrossRef]
  18. G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
    [CrossRef]
  19. C. Y. Lin, A. X. Wang, W. C. Lai, J. L. Covey, S. Chakravarty, and R. T. Chen, “Coupling loss minimization of slow light slotted photonic crystal waveguides using mode matching with continuous group index perturbation,” Opt. Lett. 37(2), 232–234 (2012).
    [CrossRef]
  20. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
    [CrossRef]
  21. Y. Tang and B. Wang, “Study of active width-reduced line-defect photonic crystal waveguides for high speed applications,” Proc. SPIE 7135, 71350R, 71350R-8 (2008).
    [CrossRef]
  22. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18(26), 27627–27638 (2010).
    [CrossRef] [PubMed]
  23. L. Gu, Micro-and Nano-Periodic-Structure-Based Devices for Laser Beam Control 99–100 (ProQuest, 2007).

2012 (2)

H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48(2), 210–220 (2012).
[CrossRef]

C. Y. Lin, A. X. Wang, W. C. Lai, J. L. Covey, S. Chakravarty, and R. T. Chen, “Coupling loss minimization of slow light slotted photonic crystal waveguides using mode matching with continuous group index perturbation,” Opt. Lett. 37(2), 232–234 (2012).
[CrossRef]

2011 (3)

2010 (3)

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18(26), 27627–27638 (2010).
[CrossRef] [PubMed]

L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
[CrossRef]

2009 (3)

2008 (4)

J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008).
[CrossRef] [PubMed]

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Y. Tang and B. Wang, “Study of active width-reduced line-defect photonic crystal waveguides for high speed applications,” Proc. SPIE 7135, 71350R, 71350R-8 (2008).
[CrossRef]

2006 (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[CrossRef]

2005 (2)

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

A. Mekis and J. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19(6), 861–865 (2001).
[CrossRef]

1999 (1)

G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[CrossRef]

Andreani, L. C.

Baba, T.

Beggs, D.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

Beggs, D. M.

L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18(26), 27627–27638 (2010).
[CrossRef] [PubMed]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[CrossRef]

Botten, L. C.

Brosi, J. M.

Bruns, J.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Chakravarty, S.

Chen, R. T.

C. Y. Lin, A. X. Wang, W. C. Lai, J. L. Covey, S. Chakravarty, and R. T. Chen, “Coupling loss minimization of slow light slotted photonic crystal waveguides using mode matching with continuous group index perturbation,” Opt. Lett. 37(2), 232–234 (2012).
[CrossRef]

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
[CrossRef] [PubMed]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Chen, W.

G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Chen, X.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Covey, J. L.

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[CrossRef]

Di Falco, A.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Dossou, K. B.

Eich, M.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Etrich, C.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Fan, S.

Freude, W.

Gu, L.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Hamachi, Y.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hampe, J.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Hosseini, A.

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
[CrossRef] [PubMed]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

Hugonin, J. P.

Ibanescu, M.

Iliew, R.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Ippen, E.

Ishikura, N.

H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48(2), 210–220 (2012).
[CrossRef]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

Jen, A. K. Y.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Jiang, W.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Joannopoulos, J.

Johnson, S. G.

Kampfrath, T.

L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
[CrossRef]

Koos, C.

Krauss, T.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

Krauss, T. F.

L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18(26), 27627–27638 (2010).
[CrossRef] [PubMed]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Kubo, S.

Kuipers, K.

L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
[CrossRef]

Kuipers, L.

Kwong, D. N.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

Lai, W. C.

Lalanne, P.

Lederer, F.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Leuthold, J.

Li, G.

G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Lin, C. Y.

Luo, J.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Martijn de Sterke, C.

Mazoyer, S.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

McPhedran, R. C.

Mekis, A.

Melloni, A.

Morichetti, F.

Nguyen, H.

H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48(2), 210–220 (2012).
[CrossRef]

Nguyen, H. C.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

O'Faolain, L.

L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
[CrossRef]

Pappert, S.

G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Pertsch, T.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Petrov, A.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[CrossRef]

Rahimi, S.

Sakai, Y.

H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48(2), 210–220 (2012).
[CrossRef]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

Schulz, S.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

Schulz, S. A.

Shinkawa, M.

H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48(2), 210–220 (2012).
[CrossRef]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Soljacic, M.

Spasenovic, M.

Subbaraman, H.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
[CrossRef] [PubMed]

Sun, C.

G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Tang, Y.

Y. Tang and B. Wang, “Study of active width-reduced line-defect photonic crystal waveguides for high speed applications,” Proc. SPIE 7135, 71350R, 71350R-8 (2008).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Waldow, M.

Wang, A. X.

Wang, B.

Y. Tang and B. Wang, “Study of active width-reduced line-defect photonic crystal waveguides for high speed applications,” Proc. SPIE 7135, 71350R, 71350R-8 (2008).
[CrossRef]

White, T.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

White, T. P.

Wülbern, J. H.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Xu, X.

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express 19(22), 21832–21841 (2011).
[CrossRef] [PubMed]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yu, P.

G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K. Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98(3), 031107 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic Crystal Silicon Optical Modulators: Carrier-Injection and Depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48(2), 210–220 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of pin-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

IEEE Photon. J. (1)

L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photon. J. 2(3), 404–414 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[CrossRef]

G. Li, C. Sun, S. Pappert, W. Chen, and P. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77(11), 115124 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. Tang and B. Wang, “Study of active width-reduced line-defect photonic crystal waveguides for high speed applications,” Proc. SPIE 7135, 71350R, 71350R-8 (2008).
[CrossRef]

Other (1)

L. Gu, Micro-and Nano-Periodic-Structure-Based Devices for Laser Beam Control 99–100 (ProQuest, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A schematic of band engineered PCW and PCW coupler. (b) Band structures of the designed band-engineered PCW and step PCW coupler. Silica light line (n = 1.45) is shown by a dashed green light. (c) Variations of the group index and (d) group velocity dispersion (GVD) over the bandwidth of intersect. (b), (c) and (d) are simulation results using 3D Rsoft Bandsolve. The low-dispersion slow-light wavelength range is highlighted in (b), (c) and (d).

Fig. 2
Fig. 2

Schematic of (a) PIN diode embedded PCW modulator arm, and (b) cross section showing doping concentrations and structural dimensions

Fig. 3
Fig. 3

A schematic of photonic crystal MZI modulator; scanning electronic microscope images of the active arm of the modulator and the photonic crystal waveguide coupler are shown as insets.

Fig. 4
Fig. 4

(a) Output spectrum of PCW device (red curve) and the calculated group index based on FT method (blue curve). The PCW transmission curve is also provided as a reference; (b) static characteristic of the PIN diode;

Fig. 5
Fig. 5

(a) triangular electrical drive signal with a Vpp of 1.12 V and Voffset of 1.25 V (top). The over modulated optical signal indication a Vπ of 0.58 V (bottom); (b) Variations of Vπ versus the optical carrier wavelength; (c) the optical signal of 2 GHz operation at λ = 1550.48 nm. The low-dispersion slow-light wavelength range is highlighted in (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

s mzi = d P O d i m = π P I T ff R s 2 V π
L λ 0 1 2σ ( n δn ) 1 n g
V π B λ 0 n g

Metrics