Abstract

We demonstrate wideband integrated photonic circuits in sputter-deposited aluminum nitride (AlN) thin films. At both near-infrared and visible wavelengths, we achieve low propagation loss in integrated waveguides and realize high-quality optical resonators. In the telecoms C-band (1520-1580 nm), we obtain the highest optical Q factor of 440,000. Critical coupled devices show extinction ratio above 30 dB. For visible wavelengths (around 770 nm), intrinsic quality factors in excess of 30,000 is demonstrated. Our work illustrates the potential of AlN as a low loss material for wideband optical applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2006).
    [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2007).
    [CrossRef]
  3. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  4. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  5. W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys. 45(4), 1846–1848 (1974).
    [CrossRef]
  6. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  7. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [CrossRef] [PubMed]
  8. C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
    [CrossRef] [PubMed]
  9. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
    [CrossRef] [PubMed]
  10. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [CrossRef] [PubMed]
  11. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
    [CrossRef] [PubMed]
  12. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
    [CrossRef]
  13. K. Y. Fong, W. H. P. Pernice, M. Li, and H. X. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
    [CrossRef]
  14. Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of nanomechanical resonators,” Phys. Rev. Lett. 105(2), 027205 (2010).
    [CrossRef] [PubMed]
  15. H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
    [CrossRef]
  16. C. M. Yang, K. Uehara, S. K. Kim, S. Kameda, H. Nakase, and K. Tsubouchi, “Highly c-axis-oriented AIN film using MOCVD for 5GHz-Band FBAR filter,” Proceedings of the IEEE Ultrasonics Symposium, Honolulu, Hawaii, 2003 (IEEE, New York, 2003), p.170–173.
  17. G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
    [CrossRef]
  18. C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
    [CrossRef] [PubMed]
  19. H. Markoc, Handbook of Nitride Semiconductors and Devices (Wiley, 2009).
  20. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
    [CrossRef]
  21. K. Y. Fong, W. H. Pernice, M. Li, and H. X. Tang, “Tunable optical coupler controlled by optical gradient forces,” Opt. Express 19(16), 15098–15108 (2011).
    [CrossRef] [PubMed]
  22. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
    [CrossRef] [PubMed]
  23. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  24. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
    [CrossRef] [PubMed]
  25. D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer, 2007).
  26. P. Rabiei, W. H. Steier, Cheng Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [CrossRef]

2011 (4)

2010 (5)

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[CrossRef] [PubMed]

K. Y. Fong, W. H. P. Pernice, M. Li, and H. X. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of nanomechanical resonators,” Phys. Rev. Lett. 105(2), 027205 (2010).
[CrossRef] [PubMed]

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

2007 (1)

2006 (3)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2006).
[CrossRef]

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

1994 (1)

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

1974 (1)

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys. 45(4), 1846–1848 (1974).
[CrossRef]

1973 (1)

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

Adibi, A.

Atabaki, A. H.

Baets, R.

Bauters, J. F.

Beckx, S.

Bienstman, P.

Bleszynski Jayich, A. C.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

Bludau, W.

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys. 45(4), 1846–1848 (1974).
[CrossRef]

Blumenthal, D. J.

Bogaerts, W.

Bowers, J. E.

Cheng Zhang,

Dalton, L. R.

Dumon, P.

Ettenberg, M.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

Fathpour, S.

Faust, T.

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of nanomechanical resonators,” Phys. Rev. Lett. 105(2), 027205 (2010).
[CrossRef] [PubMed]

Felmetsger, V. V.

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

Fong, K. Y.

Gaeta, A. L.

Gilbert, S. L.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Gondarenko, A.

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

Heck, M. J. R.

Heinke, W.

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys. 45(4), 1846–1848 (1974).
[CrossRef]

Hopcroft, M. A.

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

Jalali, B.

Jayich, A. M.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2006).
[CrossRef]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2006).
[CrossRef]

Kotthaus, J. P.

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of nanomechanical resonators,” Phys. Rev. Lett. 105(2), 027205 (2010).
[CrossRef] [PubMed]

Kuypers, J. H.

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

Lai, Y. J.

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

Levy, J. S.

Li, M.

Lin, C. M.

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

Lipson, M.

Luyssaert, B.

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Nakano, S.

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

Okano, H.

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

Okawachi, Y.

Onton, A.

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys. 45(4), 1846–1848 (1974).
[CrossRef]

Palacios, T.

Pankove, J. I.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

Pernice, W.

Pernice, W. H.

Pernice, W. H. P.

K. Y. Fong, W. H. P. Pernice, M. Li, and H. X. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

Piazza, G.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[CrossRef]

Pisano, A. P.

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[CrossRef]

Rabiei, P.

Ryu, K. K.

Saha, K.

Schuck, C.

Shah Hosseini, E.

Shanks, W. E.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

Shibata, K.

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

Soltani, M.

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Spencer, D. T.

Steier, W. H.

Stephanou, P. J.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[CrossRef]

Stofko, E. J.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

Taillaert, D.

Takahashi, Y.

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

Tanaka, N.

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

Tanaka, T.

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

Tang, H. X.

Thompson, J. D.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Tien, M.-C.

Unterreithmeier, Q. P.

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of nanomechanical resonators,” Phys. Rev. Lett. 105(2), 027205 (2010).
[CrossRef] [PubMed]

Van Campenhout, J.

Van Thourhout, D.

Wen, Y. H.

Wiaux, V.

Xiong, C.

Yang, C.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

Yegnanarayanan, S.

Yen, T. T.

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

Yim, W. M.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

Zanzucchi, P. J.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

Zwickl, B. M.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92(10), 103125 (2008).
[CrossRef]

K. Y. Fong, W. H. P. Pernice, M. Li, and H. X. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett. 97(7), 073112 (2010).
[CrossRef]

H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices,” Appl. Phys. Lett. 64(2), 166–168 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C. M. Lin, T. T. Yen, Y. J. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, and A. P. Pisano, “Temperature-compensated aluminum nitride lamb wave resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 524–532 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys. 45(4), 1846–1848 (1974).
[CrossRef]

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44(1), 292–296 (1973).
[CrossRef]

J. Lightwave Technol. (3)

J. Microelectromech. Syst. (1)

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15(6), 1406–1418 (2006).
[CrossRef]

Nat. Photonics (1)

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2006).
[CrossRef]

Nature (1)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Opt. Express (7)

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[CrossRef] [PubMed]

C. Xiong, W. H. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
[CrossRef] [PubMed]

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[CrossRef] [PubMed]

K. Y. Fong, W. H. Pernice, M. Li, and H. X. Tang, “Tunable optical coupler controlled by optical gradient forces,” Opt. Express 19(16), 15098–15108 (2011).
[CrossRef] [PubMed]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of nanomechanical resonators,” Phys. Rev. Lett. 105(2), 027205 (2010).
[CrossRef] [PubMed]

Other (3)

C. M. Yang, K. Uehara, S. K. Kim, S. Kameda, H. Nakase, and K. Tsubouchi, “Highly c-axis-oriented AIN film using MOCVD for 5GHz-Band FBAR filter,” Proceedings of the IEEE Ultrasonics Symposium, Honolulu, Hawaii, 2003 (IEEE, New York, 2003), p.170–173.

H. Markoc, Handbook of Nitride Semiconductors and Devices (Wiley, 2009).

D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1
Fig.1

(a) Measured transmission spectra of grating couplers optimized for IR light around 1550nm showing ~60 nm bandwidth. By varying the grating period the central coupling wavelength is selected. (b) Transmission of grating couplers optimized for coupling at 780 nm with a coupling bandwidth of ~30 nm.

Fig. 2
Fig. 2

(a) The geometry of the pulley structure used during the FDTD optimization of the coupling gap. Optimization parameters are the coupling gap g and the output waveguide width w770. The width of the ring resonator is kept constant. (b) A SEM image of the coupling region of a pulley structure. (c) The calculated power transfer from the ring into the waveguide in dependence of the coupling length at fixed coupling gap. The blue markers represent FDTD simulation results whereas the red line is a sinusoidal fit to the data. (d) The calculated coupling length in dependence of coupling gap. Markers are FDTD results and the red line is the linear fit.

Fig. 3
Fig. 3

Optical micrographs of fabricated ring resonators for measuring the optical Q of AlN resonators at NIR (a) and visible (b) wavelengths. The 1550 nm input waveguide is 1 µm wide and the 770 nm input waveguide is 350 nm wide. In order to increase the coupling into the ring at visible wavelengths a pulley structure is used. (c) A SEM image of the coupling region of the 1550 nm input into the ring, showing the etch profile of the waveguide sidewalls. Fundamental TE-like mode profile (plot in electric field, x component) in (d) a 1550 nm waveguide (H = 330 nm, W = 1µm) and (e) a 770 nm waveguide (H = 330 nm, W = 350 nm).

Fig. 4
Fig. 4

(a) The measurement setup used to characterize the devices. Light from tunable laser sources is coupled into the chip using an optical fiber array. Transmitted NIR and visible light is detected with an InGaAs photoreceiver and a Si photodetector, respectively. (b) The optical transmission spectrum of a critically coupled ring resonator with high extinction ratio of 30 dB for 1550 nm light input. In this case the measured optical Q is on the order of 100,000. (c) The spectrum for an undercoupled ring resonator. The Lorentzian fit to the resonance dip (solid red line) reveals a linewidth of 3.5 pm corresponding to optical Q of 440,000.

Fig. 5
Fig. 5

(a) The measured optical quality factor for critically coupled resonator devices in dependence of waveguide width. A monotonic increase in Q is observed for waveguide widths below 900 nm, which is a result of the waveguide width (630 nm) being closer to the cutoff width for 1550 nm input light. (b) The measured extinction ratio in dependence of coupling gap and waveguide width. For the 900 nm wide waveguide the critical coupling gap is the largest (650 nm), indicating that internal losses in the ring are minimized.

Fig. 6
Fig. 6

(a) The TE-polarized transmission as a function of wavelength for a ring resonator with R = 40 µm. Inset: resonance at 774.24 nm. The fitted linewidth (red line) is 43 pm, corresponding to a Q of 18,000. (b) The zoom-in spectrum of an undercoupled ring resonator. The fitted linewidth (red line) is 26 pm, corresponding to a Q of 30,000.

Metrics