Abstract

We have recently shown that graphene is unsuitable to replace metals in the current-carrying elements of metamaterials. At the other hand, experiments have demonstrated that a layer of graphene can modify the optical response of a metal-based metamaterial. Here we study this electromagnetic interaction between metamaterials and graphene. We show that the weak optical response of graphene can be modified dramatically by coupling to the strong resonant fields in metallic structures. A crucial element determining the interaction strength is the orientation of the resonant fields. If the resonant electric field is predominantly parallel to the graphene sheet (e.g., in a complementary split-ring metamaterial), the metamaterial’s resonance can be strongly damped. If the resonant field is predominantly perpendicular to the graphene sheet (e.g., in a wire-pair metamaterial), no significant interaction exists.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [CrossRef] [PubMed]
  2. A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
    [CrossRef]
  3. C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
    [CrossRef] [PubMed]
  4. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
    [CrossRef] [PubMed]
  5. S. De, J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films,” ACS Nano 4, 2713–2720 (2010).
    [CrossRef] [PubMed]
  6. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
    [CrossRef]
  7. F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
    [CrossRef]
  8. M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
    [CrossRef]
  9. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [CrossRef] [PubMed]
  10. F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [CrossRef] [PubMed]
  11. P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012).
    [CrossRef]
  12. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [CrossRef] [PubMed]
  13. N. M. Litchinitser, V. M. Shalaev, “Photonic metamaterials,” Laser. Phys. Lett. 5, 411–420 (2008).
    [CrossRef]
  14. C. M. Soukoulis, M. Wegener, “Optical metamaterials—more bulky and less lossy,” Science 330, 1633–1634 (2010).
    [CrossRef] [PubMed]
  15. C. M. Soukoulis, M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).
  16. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [CrossRef] [PubMed]
  17. T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
    [CrossRef]
  18. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  19. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
    [CrossRef]
  20. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
    [CrossRef]
  21. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [CrossRef] [PubMed]
  22. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [CrossRef] [PubMed]
  23. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  24. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Ant. Wireless Prop. Lett. 1, 10 (2002).
    [CrossRef]
  25. P. Tassin, X. Sahyoun, I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008).
    [CrossRef]
  26. A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007).
    [CrossRef]
  27. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef] [PubMed]
  28. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  29. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
    [CrossRef]
  30. M. Dalarsson, P. Tassin, “Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material,” Opt. Express 17, 6747–6752 (2009).
    [CrossRef] [PubMed]
  31. N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
    [CrossRef] [PubMed]
  32. F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
    [CrossRef] [PubMed]
  33. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]

2012

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012).
[CrossRef]

2011

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef] [PubMed]

C. M. Soukoulis, M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

2010

C. M. Soukoulis, M. Wegener, “Optical metamaterials—more bulky and less lossy,” Science 330, 1633–1634 (2010).
[CrossRef] [PubMed]

S. De, J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films,” ACS Nano 4, 2713–2720 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
[CrossRef] [PubMed]

2009

M. Dalarsson, P. Tassin, “Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material,” Opt. Express 17, 6747–6752 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
[CrossRef]

M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

2008

C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef] [PubMed]

N. M. Litchinitser, V. M. Shalaev, “Photonic metamaterials,” Laser. Phys. Lett. 5, 411–420 (2008).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

P. Tassin, X. Sahyoun, I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

2007

A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007).
[CrossRef]

A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

2006

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

2005

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

2004

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

2002

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Ant. Wireless Prop. Lett. 1, 10 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Alu, A.

A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007).
[CrossRef]

Avouris, P.

F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
[CrossRef]

Berger, C.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

Brown, N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef] [PubMed]

Coleman, J. N.

S. De, J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films,” ACS Nano 4, 2713–2720 (2010).
[CrossRef] [PubMed]

Conrad, E. H.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Dalarsson, M.

De, S.

S. De, J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films,” ACS Nano 4, 2713–2720 (2010).
[CrossRef] [PubMed]

De Angelis, F.

de Heer, W. A.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Di Fabrizio, E.

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Engheta, N.

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007).
[CrossRef]

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Ant. Wireless Prop. Lett. 1, 10 (2002).
[CrossRef]

Erentok, A.

A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

First, P. N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef] [PubMed]

Geim, A. K.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

Grigorenko, A. N.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

Hass, J.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef] [PubMed]

Jablan, M.

M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef] [PubMed]

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Kravets, V. G.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef] [PubMed]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

Li, T.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Li, X.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Lidorikis, E.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Lin, X.

F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser, V. M. Shalaev, “Photonic metamaterials,” Laser. Phys. Lett. 5, 411–420 (2008).
[CrossRef]

Lombardo, A.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Luo, Z.

Marchenkov, A. N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Markos, P.

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Mayou, D.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

Mueller, T.

F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
[CrossRef]

Naud, C.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Nikolaenko, A. E.

Novoselov, K. S.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Papasimakis, N.

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Sahyoun, X.

P. Tassin, X. Sahyoun, I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008).
[CrossRef]

Schedin, F.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

N. M. Litchinitser, V. M. Shalaev, “Photonic metamaterials,” Laser. Phys. Lett. 5, 411–420 (2008).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Shen, Z. X.

Smith, D. R.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Song, Z.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012).
[CrossRef]

C. M. Soukoulis, M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

C. M. Soukoulis, M. Wegener, “Optical metamaterials—more bulky and less lossy,” Science 330, 1633–1634 (2010).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

M. Dalarsson, P. Tassin, “Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material,” Opt. Express 17, 6747–6752 (2009).
[CrossRef] [PubMed]

P. Tassin, X. Sahyoun, I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008).
[CrossRef]

Vakil, A.

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
[CrossRef]

Veretennicoff, I.

P. Tassin, X. Sahyoun, I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008).
[CrossRef]

Vier, D. C.

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Wegener, M.

C. M. Soukoulis, M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

C. M. Soukoulis, M. Wegener, “Optical metamaterials—more bulky and less lossy,” Science 330, 1633–1634 (2010).
[CrossRef] [PubMed]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

Wu, X.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Xia, F.

F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
[CrossRef]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

Zheludev, N. I.

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Ziolkowski, R. W.

A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007).
[CrossRef]

ACS Nano

S. De, J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films,” ACS Nano 4, 2713–2720 (2010).
[CrossRef] [PubMed]

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, A. C. Ferrari, “Surface-enhanced Raman spectroscopy of graphene,” ACS Nano 4, 5617–5626 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Tassin, X. Sahyoun, I. Veretennicoff, “Miniaturization of photonic waveguides by the use of left-handed materials,” Appl. Phys. Lett. 92, 203111 (2008).
[CrossRef]

IEEE Ant. Wireless Prop. Lett.

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Ant. Wireless Prop. Lett. 1, 10 (2002).
[CrossRef]

IEEE Antennas Prop. Mag.

A. Alu, N. Engheta, A. Erentok, R. W. Ziolkowski, “Single-negative, double-negative and low index metamaterials and their electromagnetic applications,” IEEE Antennas Prop. Mag. 49, 23–36 (2007).
[CrossRef]

Laser. Phys. Lett.

N. M. Litchinitser, V. M. Shalaev, “Photonic metamaterials,” Laser. Phys. Lett. 5, 411–420 (2008).
[CrossRef]

Nano Lett.

F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef] [PubMed]

Nature Mater.

A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

Nature Nanotech.

F. Xia, T. Mueller, X. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotech. 4, 839–843 (2009).
[CrossRef]

Nature Photon.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nature Photon. 6259–264 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon. 4, 611–622 (2010).
[CrossRef]

C. M. Soukoulis, M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5, 523–530 (2011).

Opt. Express

Photon. Nanostruct.: Fundam. Appl.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.: Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Phys. Rev. B

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[CrossRef]

Phys. Rev. Lett.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “A metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Science

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

C. M. Soukoulis, M. Wegener, “Optical metamaterials—more bulky and less lossy,” Science 330, 1633–1634 (2010).
[CrossRef] [PubMed]

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef] [PubMed]

C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef] [PubMed]

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312, 1191–1196 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Unit cell of the complementary SRR metamaterial. (b) Absorption spectrum of the same metamaterial.

Fig. 2
Fig. 2

(a) Electric field patterns of the resonances of the complementary SRR metamaterial shown in Fig. 1 (without graphene). (a) Fields concentrated in the slit at f = 129 THz. (b) Fields concentrated in the U-shaped ring at f = 178 THz.

Fig. 3
Fig. 3

Comparison between the scattering properties of the complementary SRR metamaterial with and without graphene. (a) Transmittance. (b) Absorbance. (c) Reflectance.

Fig. 4
Fig. 4

Current density in the graphene sheet. The current density simply follows the resonant electric field of the resonances of the complementary SRR structure.

Fig. 5
Fig. 5

(a) Unit cell of the wire-pair metamaterial. (b) Electric field at the resonance frequency of the magnetic dipole mode. Note that the large resonant electric field is mostly perpendicular to the substrate.

Fig. 6
Fig. 6

Comparison between the scattering properties of the wire-pair metamaterial with and without graphene. (a) Transmittance. (b) Absorbance. (c) Reflectance.

Metrics