Abstract

We developed a laser-diode pumped, 4.6-GHz repetition-rate, Yb:KYW Kerr-lens mode-locked femtosecond oscillator. A bow-tie ring cavity generates an output power of 14.6 mW with a spectrum width of 11 nm at 1046 nm. To the best of our knowledge, this is the highest-repetition frequency in the laser-diode pumped femtosecond Kerr-lens mode-locked laser.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
    [CrossRef] [PubMed]
  2. Y. V. Baklanov and V. P. Chebotayev, “Narrow Resonances of Two-Photon Absorption of Super-Narrow Pulses in a Gas,” Appl. Phys. (Berl.)12 (1), 97–99 (1977).
    [CrossRef]
  3. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30(13), 1734–1736 (2005).
    [CrossRef] [PubMed]
  4. D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
    [CrossRef]
  5. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express16, 2387–2397 (2007).
  6. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
    [CrossRef]
  7. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005).
    [CrossRef] [PubMed]
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  9. D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73(6), 063407 (2006).
    [CrossRef]
  10. E. Ilinova, M. Ahmad, and A. Derevianko, “Doppler cooling with coherent trains of laser pulses and a tunable velocity comb,” Phys. Rev. A84(3), 033421 (2011).
    [CrossRef]
  11. S. Lopez, “Astronomy. The universe measured with a comb,” Science321(5894), 1301–1302 (2008).
    [CrossRef] [PubMed]
  12. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
    [CrossRef] [PubMed]
  13. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
    [CrossRef] [PubMed]
  14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
    [CrossRef]
  15. D. E. Spence, J. M. Dudley, K. Lamb, W. E. Sleat, and W. Sibbett, “Nearly quantum-limited timing jitter in a self-mode-locked Ti:sapphire laser,” Opt. Lett.19(7), 481–483 (1994).
    [CrossRef] [PubMed]
  16. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
    [CrossRef] [PubMed]
  17. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express15(20), 13155–13166 (2007).
    [CrossRef] [PubMed]
  18. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).
    [CrossRef] [PubMed]
  19. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
    [CrossRef]
  20. G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
    [CrossRef]
  21. K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
    [CrossRef]
  22. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett.35(5), 748–750 (2010).
    [CrossRef] [PubMed]
  23. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express20(4), 4248–4253 (2012).
    [CrossRef] [PubMed]
  24. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express17(7), 5630–5635 (2009).
    [CrossRef] [PubMed]
  25. Y. Kobayashi, Y. Nomura, and S. Watanabe, “1.3-GHz, 20-W, femtosecond chirped-pulse amplifier system,” CMN-3, CLEO 2010 (2010).
  26. S. Meyer, J. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008).
    [CrossRef]

2012

2011

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).
[CrossRef] [PubMed]

E. Ilinova, M. Ahmad, and A. Derevianko, “Doppler cooling with coherent trains of laser pulses and a tunable velocity comb,” Phys. Rev. A84(3), 033421 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
[CrossRef]

2010

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett.35(5), 748–750 (2010).
[CrossRef] [PubMed]

2009

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express17(7), 5630–5635 (2009).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

2008

S. Meyer, J. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008).
[CrossRef]

S. Lopez, “Astronomy. The universe measured with a comb,” Science321(5894), 1301–1302 (2008).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

2007

2006

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73(6), 063407 (2006).
[CrossRef]

2005

2002

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

2001

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

2000

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

1994

1977

Y. V. Baklanov and V. P. Chebotayev, “Narrow Resonances of Two-Photon Absorption of Super-Narrow Pulses in a Gas,” Appl. Phys. (Berl.)12 (1), 97–99 (1977).
[CrossRef]

Abramski, K. M.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
[CrossRef]

Adachi, T.

Ahmad, M.

E. Ilinova, M. Ahmad, and A. Derevianko, “Doppler cooling with coherent trains of laser pulses and a tunable velocity comb,” Phys. Rev. A84(3), 033421 (2011).
[CrossRef]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Baklanov, Y. V.

Y. V. Baklanov and V. P. Chebotayev, “Narrow Resonances of Two-Photon Absorption of Super-Narrow Pulses in a Gas,” Appl. Phys. (Berl.)12 (1), 97–99 (1977).
[CrossRef]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005).
[CrossRef] [PubMed]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30(13), 1734–1736 (2005).
[CrossRef] [PubMed]

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Bergquist, J. C.

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Braje, D.

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

Chebotayev, V. P.

Y. V. Baklanov and V. P. Chebotayev, “Narrow Resonances of Two-Photon Absorption of Super-Narrow Pulses in a Gas,” Appl. Phys. (Berl.)12 (1), 97–99 (1977).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Derevianko, A.

E. Ilinova, M. Ahmad, and A. Derevianko, “Doppler cooling with coherent trains of laser pulses and a tunable velocity comb,” Phys. Rev. A84(3), 033421 (2011).
[CrossRef]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

S. Meyer, J. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008).
[CrossRef]

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005).
[CrossRef] [PubMed]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30(13), 1734–1736 (2005).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Drullinger, R. E.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Dudley, J. M.

Erbert, G.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Fiebig, C.

Fortier, T.

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

Gerginov, V.

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Gohle, C.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express16, 2387–2397 (2007).

Heinecke, D.

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

Hollberg, L.

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005).
[CrossRef] [PubMed]

V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30(13), 1734–1736 (2005).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Ilinova, E.

E. Ilinova, M. Ahmad, and A. Derevianko, “Doppler cooling with coherent trains of laser pulses and a tunable velocity comb,” Phys. Rev. A84(3), 033421 (2011).
[CrossRef]

Itano, W. M.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Kaczmarek, P.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
[CrossRef]

Kalashnikov, V. L.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Kärtner, F. X.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Kasamatsu, T.

Katou, M.

Keller, U.

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express20(4), 4248–4253 (2012).
[CrossRef] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Kielpinski, D.

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73(6), 063407 (2006).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Klenner, A.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Kozich, V. P.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Krainer, L.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Krzempek, K.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
[CrossRef]

Lamb, K.

Lecomte, S.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Lee, W. D.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Lopez, S.

S. Lopez, “Astronomy. The universe measured with a comb,” Science321(5894), 1301–1302 (2008).
[CrossRef] [PubMed]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Martinez, A.

McFerran, J. J.

Mejid, F.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Meyer, S.

S. Meyer, J. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008).
[CrossRef]

Mikhailov, V. P.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Moser, M.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Nenadovic, L.

Newbury, N. R.

Nikodem, M.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
[CrossRef]

Oates, C. W.

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Oskay, W. H.

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Paschke, K.

Paschotta, R.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Pekarek, S.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Poloyko, I. G.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Posnov, N.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Prokoshin, P.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Radzewicz, C.

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Schlager, J. B.

Schliesser, A.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Sibbett, W.

Sleat, W. E.

Sobon, G.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
[CrossRef]

Spence, D. E.

Squier, J.

S. Meyer, J. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008).
[CrossRef]

Stein, B.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Südmeyer, T.

Swann, W. C.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Tanner, C. E.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express16, 2387–2397 (2007).

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Vogel, K. R.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Wasylczyk, P.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Weingarten, K. J.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Wilpers, G.

Wineland, D. J.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

Wnuk, P.

Yamashita, S.

Yamazoe, S.

Yumashev, K.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Appl. Phys. (Berl.)

Y. V. Baklanov and V. P. Chebotayev, “Narrow Resonances of Two-Photon Absorption of Super-Narrow Pulses in a Gas,” Appl. Phys. (Berl.)12 (1), 97–99 (1977).
[CrossRef]

Eur. Phys. J. D

S. Meyer, J. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008).
[CrossRef]

IEEE J. Quantum Electron.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Nat. Photonics

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010).
[CrossRef]

Nature

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Opt. Commun.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er–Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

K. Yumashev, N. Posnov, P. Prokoshin, V. L. Kalashnikov, F. Mejid, I. G. Poloyko, V. P. Mikhailov, and V. P. Kozich, “Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4) 2,” Opt. Quantum Electron.32 (1), 43–48 (2000).
[CrossRef]

Phys. Rev. A

D. Heinecke, A. Bartels, T. Fortier, D. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A80(5), 053806 (2009).
[CrossRef]

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73(6), 063407 (2006).
[CrossRef]

E. Ilinova, M. Ahmad, and A. Derevianko, “Doppler cooling with coherent trains of laser pulses and a tunable velocity comb,” Phys. Rev. A84(3), 033421 (2011).
[CrossRef]

Science

S. Lopez, “Astronomy. The universe measured with a comb,” Science321(5894), 1301–1302 (2008).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293(5531), 825–828 (2001).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

Other

Y. Kobayashi, Y. Nomura, and S. Watanabe, “1.3-GHz, 20-W, femtosecond chirped-pulse amplifier system,” CMN-3, CLEO 2010 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. Laser Diode, single-mode-fiber (SMF) coupled fiber-Bragg-grating (FBG) stabilized laser diode (750 mW @ 980 nm); HWP, half-wave plate; L1 and L2, f = 25 mm and 40 mm lenses, respectively; HR, high reflective mirrors at laser wavelength (1050 nm) with high transmittance at a pump wavelength (980 nm); Yb:KYW, gain medium; CM, chirped mirror (GVD ~-650 ± 100 fs2). A Peltier module is used for cooling the Yb:KYW crystal.

Fig. 2
Fig. 2

Output power versus pump power. The sudden jump of the output power around the pump power of 480 mW corresponds to the mode-locking threshold.

Fig. 3
Fig. 3

Optical spectrum measured by an optical spectrum analyzer with a resolution of 1 nm. The full width at half maximum of the spectrum (Δλ) is 11 nm centered at 1046 nm. Fourier-transform-limited pulse duration is 146 fs.

Fig. 4
Fig. 4

(a) RF spectrum of pulse train measured by an RF spectrum analyzer with a RBW of 100 kHz. The inset shows the magnified trace of the fundamental peak with a RBW of 100 Hz. (b) temporal profile of the pulse train measured with a fast photo diode and sampling oscilloscope.

Fig. 5
Fig. 5

(a) Repetition frequency measurement for about 240 min. Small fluctuations of the repetition frequency are caused by variations in room temperature or pressure change. (b) Phase noise of the repetition frequency (left axis). The detection limit (left axis) is measured without beam incident into the photodetector. The integrated RMS timing jitter (from 10 MHz to 1 kHz) calculated from the phase noise is shown on the right axis.

Metrics