Abstract

We report novel indium gallium arsenide (InGaAs) nanopillar lasers that are monolithically grown on (100)-silicon-based functional metal-oxide-semiconductor field effect transistors (MOSFETs) at low temperature (410 °C). The MOSFETs maintain their performance after the nanopillar growth, providing a direct demonstration of complementary metal-oxide-semiconudctor (CMOS) compatibility. Room-temperature operation of optically pumped lasers is also achieved. To our knowledge, this is the first time that monolithically integrated lasers and transistors have been shown to work on the same silicon chip, serving as a proof-of-concept that such integration can be extended to more complicated CMOS integrated circuits.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  2. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [CrossRef] [PubMed]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  4. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
    [CrossRef] [PubMed]
  5. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  7. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
    [CrossRef] [PubMed]
  8. Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
    [CrossRef]
  9. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
    [CrossRef]
  10. S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
    [CrossRef]
  11. J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
    [CrossRef] [PubMed]
  12. M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
    [CrossRef]
  13. M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, and C. Chang-Hasnain, “Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission,” Opt. Express 17(10), 7831–7836 (2009).
    [CrossRef] [PubMed]
  14. L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
    [CrossRef] [PubMed]
  15. H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
    [CrossRef]

2011 (3)

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

2009 (2)

2008 (1)

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (3)

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

2004 (1)

1993 (1)

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
[CrossRef]

Abstreiter, G.

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

Baets, R.

Bhat, R.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
[CrossRef]

Bichler, M.

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

Bowers, J. E.

Boyraz, O.

Camacho-Aguilera, R.

Chang-Hasnain, C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, and C. Chang-Hasnain, “Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission,” Opt. Express 17(10), 7831–7836 (2009).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

Chase, C.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

Chen, R.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

Chua, C.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
[CrossRef]

Chuang, L. C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, and C. Chang-Hasnain, “Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission,” Opt. Express 17(10), 7831–7836 (2009).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Crankshaw, S.

M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, and C. Chang-Hasnain, “Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission,” Opt. Express 17(10), 7831–7836 (2009).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

Di Cioccio, L.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Fang, A. W.

Fedeli, J.-M.

Finley, J. J.

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Hertenberger, S.

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

Howe, R. T.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
[CrossRef]

Hu, H.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Hwang, D. M.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
[CrossRef]

Jalali, B.

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Kim, K. H.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Kimerling, L. C.

King, T.-J.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
[CrossRef]

Ko, W. S.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

Koblmüller, G.

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

Lagahe, C.

Li, X.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Lin, C.-H.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
[CrossRef]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, J.

Lo, Y. H.

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
[CrossRef]

Michel, J.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Moewe, M.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, and C. Chang-Hasnain, “Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission,” Opt. Express 17(10), 7831–7836 (2009).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

Ng, K. W.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

M. Moewe, L. C. Chuang, S. Crankshaw, K. W. Ng, and C. Chang-Hasnain, “Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission,” Opt. Express 17(10), 7831–7836 (2009).
[CrossRef] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Ning, C.-Z.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Regreny, P.

Rogers, J. A.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Rojo Romeo, P.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Rudolph, D.

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

Seassal, C.

Sedgwick, F. G.

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Shin, J. C.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Sun, X.

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
[CrossRef]

Takeuchi, H.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
[CrossRef]

Tran, T.-T. D.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

Van Campenhout, J.

Van Thourhout, D.

Verstuyft, S.

Wung, A.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
[CrossRef]

Yin, L.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Yu, K. J.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Zuo, J.-M.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

Y. H. Lo, R. Bhat, D. M. Hwang, C. Chua, and C.-H. Lin, “Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement,” Appl. Phys. Lett. 62(10), 1038–1040 (1993).
[CrossRef]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52(9), 2081–2086 (2005).
[CrossRef]

J. Appl. Phys. (1)

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy,” J. Appl. Phys. 108(11), 114316 (2010).
[CrossRef]

Nano Lett. (2)

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, “InxGa₁-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics,” Nano Lett. 11(11), 4831–4838 (2011).
[CrossRef] [PubMed]

L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T.-T. D. Tran, and C. Chang-Hasnain, “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett. 11(2), 385–390 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[CrossRef]

Nature (2)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of nanopillars grown on a MOSFET. Each nanopillar has a tapered hexagonal shape and consists of an InGaAs core and a GaAs shell. The nanopillars grow on both the gate and source/drain regions with a random orientation. The gate region consists of n-type doped polycrystalline silicon, while the source/drain region is made of n-type doped (100)-silicon.

Fig. 2
Fig. 2

SEM images of nanopillar growth. (a) The nanopillar grown on gate region (labeled Gate) of a MOSFET. (b) The nanopillar grown on source region of a MOSFET (gate region is labeled G). (c) The nanopillar grown inside an inverted pyramid on a (100)-silicon substrate. The pyramid, with four degenerate silicon (111) planes, is created by silicon anisotropic etching with tetramethylammonium hydroxide.

Fig. 3
Fig. 3

Nanopillar laser oscillation. (a) L-L curve of a nanopillar laser at room temperature. The blue circles are experimental data, while the red curve is the S-shape fit. The threshold pump power is approximately 600 μW. (b) Room-temperature nanopillar emission below (blue) and above (red) threshold. For visibility, the emission below threshold is magnified by 200 times. The side mode suppression ratio of the lasing peak is about 13 dB.

Fig. 4
Fig. 4

Transistor performance before and after nanopillar laser growth. (a) Transfer characteristics of a transistor (gate width 20 μm, gate length 20 μm) before and after nanopillar growth. Vgs represents the voltage between gate and source region, and Ids represents the current flowing from drain region to source region. At Vds = 0.1 V, the threshold voltage is about 1.1 V. (b) Output characteristics of the same transistor before and after nanopillar growth. Vds represents the voltage between drain and source region. (c) Histogram plots of the transistor threshold voltage before (dark dashed line) and after (red solid line) nanopillar growth for a sample of 50 different transistors. The average threshold voltage before growth is 1.09 V, while the average threshold voltage after growth is 1.06 V.

Metrics