Abstract

We demonstrate the potential of highly-doped semiconductor epilayers as building blocks for mid-infrared plasmonic structures. InAs epilayers are grown by molecular beam epitaxy and characterized by Hall measurements and optical techniques. We show that the plasma frequency of our material can be controlled across a broad range of mid-infrared frequencies. Subwavelength disks are fabricated out of our material, and localized plasmonic resonances are observed from these structures. Experimental results are compared to both numerical simulations and a simple quasistatic dipole model of our disks with good agreement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  5. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  7. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  9. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68(11), 115401 (2003).
    [CrossRef]
  10. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [CrossRef] [PubMed]
  11. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  13. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  14. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
    [CrossRef] [PubMed]
  15. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [CrossRef] [PubMed]
  16. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from midinfrared metamaterials,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [CrossRef]
  17. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [CrossRef] [PubMed]
  18. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
    [CrossRef]
  19. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
    [CrossRef]
  20. isS. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express 19(10), 9269–9281 (2011).
    [CrossRef]
  21. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [CrossRef]
  22. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
    [CrossRef]
  23. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
    [CrossRef]
  24. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [CrossRef]
  25. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
    [CrossRef]
  26. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
    [CrossRef] [PubMed]
  27. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [CrossRef] [PubMed]
  28. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
    [CrossRef] [PubMed]
  29. E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
    [CrossRef]
  30. S. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys. Condens. Matter 14(34), R881–R903 (2002).
    [CrossRef]
  31. Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
    [CrossRef]
  32. N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, “Investigation of the impurity interaction mechanism in indium arsenide,” Sov. Phys. Semicond. 12, 1139–1142 (1993).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  34. T. S. Moss, “The interpretation of the properties of indium arsenide,” Proc. Phys. Soc. B 67(10), 775–782 (1954).
    [CrossRef]
  35. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
    [CrossRef]
  36. T. S. Moss, Optical Properties of Semiconductors (Butterworth Academic Press, 1961).
  37. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  38. G. Mie, “Contributions to the optics of turbid media, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–380 (1908).
    [CrossRef]
  39. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [CrossRef]

2011 (9)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from midinfrared metamaterials,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

isS. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express 19(10), 9269–9281 (2011).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[CrossRef]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
[CrossRef] [PubMed]

2010 (2)

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
[CrossRef]

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

2009 (3)

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

2007 (4)

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

2004 (1)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

2003 (2)

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

S. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys. Condens. Matter 14(34), R881–R903 (2002).
[CrossRef]

2000 (2)

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1993 (2)

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, “Investigation of the impurity interaction mechanism in indium arsenide,” Sov. Phys. Semicond. 12, 1139–1142 (1993).

1990 (1)

E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1954 (2)

T. S. Moss, “The interpretation of the properties of indium arsenide,” Proc. Phys. Soc. B 67(10), 775–782 (1954).
[CrossRef]

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[CrossRef]

1908 (1)

G. Mie, “Contributions to the optics of turbid media, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–380 (1908).
[CrossRef]

Adams, D. C.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

isS. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express 19(10), 9269–9281 (2011).
[CrossRef]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
[CrossRef]

Adato, R.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

Aksu, S.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Altug, H.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

Artar, A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Birch, J. R.

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Boltasseva, A.

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Buchwald, W. R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Capasso, F.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

Carminati, R.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

Cederberg, J. G.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cho, A. Y.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cleary, J. W.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Engheta, N.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Ferguson, I. T.

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Geluk, E. J.

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

Goodhue, W. D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

Greffet, J. J.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hill, M. T.

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Huang, M.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

Hutchinson, A. L.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

Inampudi, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

Karouta, F.

Khabarov, E. N.

N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, “Investigation of the impurity interaction mechanism in indium arsenide,” Sov. Phys. Semicond. 12, 1139–1142 (1993).

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Kim, J.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Knight, T.

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Kuhta, N. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Leong, E. S. P.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Li, D.

Li, Y. B.

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Marell, M.

Marquier, F.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from midinfrared metamaterials,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Mie, G.

G. Mie, “Contributions to the optics of turbid media, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–380 (1908).
[CrossRef]

Moss, T. S.

T. S. Moss, “The interpretation of the properties of indium arsenide,” Proc. Phys. Soc. B 67(10), 775–782 (1954).
[CrossRef]

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

Naik, G. V.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Nesmelova, I. M.

N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, “Investigation of the impurity interaction mechanism in indium arsenide,” Sov. Phys. Semicond. 12, 1139–1142 (1993).

Ning, C. Z.

Ning, C.-Z.

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nötzel, R.

Oei, Y.-S.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Phillips, C. C.

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Podolskiy, V. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

isS. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express 19(10), 9269–9281 (2011).
[CrossRef]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
[CrossRef]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Ribaudo, T.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Semikolenova, N. A.

N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, “Investigation of the impurity interaction mechanism in indium arsenide,” Sov. Phys. Semicond. 12, 1139–1142 (1993).

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

Slocum, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

Smalbrugge, B.

Smit, M. K.

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from midinfrared metamaterials,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

Soref, R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Stradling, A.

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sun, M.

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Thomas, R. H.

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Thongrattanasiri, S.

isS. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express 19(10), 9269–9281 (2011).
[CrossRef]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
[CrossRef]

Tokumitsu, E.

E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
[CrossRef]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Tredicucci, A.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

van Veldhoven, P. J.

Vangala, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from midinfrared metamaterials,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

isS. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express 19(10), 9269–9281 (2011).
[CrossRef]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
[CrossRef]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Yanik, A. A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys. Condens. Matter 14(34), R881–R903 (2002).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, Y.

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, “Contributions to the optics of turbid media, especially colloidal metal solutions,” Ann. Phys. 330(3), 377–380 (1908).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from midinfrared metamaterials,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164–2166 (2000).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96(20), 201112 (2010).
[CrossRef]

J. Appl. Phys. (2)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

J. Phys. Condens. Matter (1)

S. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review,” J. Phys. Condens. Matter 14(34), R881–R903 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

E. Tokumitsu, “Correlation between Fermi level stabilization positions and maximum free carrier concentrations in III-V compound semiconductors,” Jpn. J. Appl. Phys. 29(Part 2, No. 5), L698–L701 (1990).
[CrossRef]

Nano Lett. (1)

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. (1)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

Phys. Rev. Lett. (6)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Proc. Phys. Soc. B (1)

T. S. Moss, “The interpretation of the properties of indium arsenide,” Proc. Phys. Soc. B 67(10), 775–782 (1954).
[CrossRef]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

Y. B. Li, A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[CrossRef]

Sov. Phys. Semicond. (1)

N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, “Investigation of the impurity interaction mechanism in indium arsenide,” Sov. Phys. Semicond. 12, 1139–1142 (1993).

Other (1)

T. S. Moss, Optical Properties of Semiconductors (Butterworth Academic Press, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental (solid lines) and modeled (dashed lines) reflection spectra for as-grown InAs layers of varying doping concentrations, normalized to reflection from a flat, optically thick, gold surface. (b) Experimental transmission spectra for the same samples. The experimental transmission spectra in (b) have been normalized to transmission through a GaAs substrate.

Fig. 2
Fig. 2

Wavelength-dependent (a) real and (b) imaginary parts of the permittivity of our five InAs epilayers, calculated from the modeled fits of our experimental reflection data from the as-grown samples using the Drude model. Range of real and imaginary permittivity values results from the uncertainty in the fitted scattering rate, Γ.

Fig. 3
Fig. 3

Short wavelength transmission though our as-grown InAs epilayers showing, for the most highly doped samples, strong transmission beyond 2 µm. Inset shows the product of the doping-dependent effective mass ( m n * (n)/ m e ) and the bandgap energy shift as a function of n2/3. Red line is a linear fit to the data.

Fig. 4
Fig. 4

(a) Transmission (solid lines) and reflection (dashed lines) data for 1.7µm (red lines) and 1.2µm (black lines) dots fabricated from wafer 009. The transmission data is normalized to air and the reflection to a gold mirror. (b) SEM image of the dots measured in (a) taken at a 45 degree tilt.

Fig. 5
Fig. 5

(a) Experimental transmission data (red curve) for the 1.7μm dots fabricated with sample 009 compared with the calculated dipole extinction curve (blue curve) and the numerically simulated absorption (green curve). Contour plots of resistive heating (W/cm3) showing the simulated resistive losses (absorption) for the pucks at (b) λ = 8.05µm (c) λ = 8.94µm (on resonance) and (d) λ = 10.05µm.

Tables (1)

Tables Icon

Table 1 Experimental and Calculated Film Data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε s ( 1 ω p 2 ω 2 +iωΓ ) , ω p 2 = n e 2 ε s ε o m *
ε(ω)= ε +i ε = ε s ( 1 ω p 2 ω 2 + Γ 2 )+i ε s ( Γ ω p 2 /ω ω 2 + Γ 2 )
ΔE=( h 2 2 m n * (n) ) ( 3n 8π ) 2/3
Q(λ)=( 24 π 2 N a 3 ε ext 3/2 λln(10) )[ ε (λ) ( ε (λ)+χ ε ext ) 2 + ε (λ) 2 ]

Metrics