Abstract

Sub-meter resolution in long-distance Brillouin Optical Time Domain Analysis (BOTDA) cannot be trivially achieved due to several issues including: resolution-uncertainty trade-offs, self-phase modulation, fiber attenuation, depletion, etc. In this paper we show that combining Raman assistance, differential pulse-width pair (DPP) measurements and a novel numerical de-noising procedure, we could obtain sub-meter resolution Brillouin optical time-domain analysis over a range of 100 km. We successfully demonstrate the detection of a 0.5 meter hot-spot in the position of worst contrast along the fiber.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
    [CrossRef] [PubMed]
  2. T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  4. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15(16), 10397–10407 (2007).
    [CrossRef] [PubMed]
  5. H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38(31), 6516–6521 (1999).
    [CrossRef] [PubMed]
  6. S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, M. González-Herráez, and L. Thévenaz, “Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors,” Opt. Lett. 36(2), 97–99 (2011).
    [CrossRef] [PubMed]
  7. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  8. F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
    [CrossRef]
  9. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. Gonzalez-Herraez, “Raman assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [CrossRef]
  10. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011), http://8.18.37.105/oe/viewmedia.cfm?uri=oe-19-5-4444&seq=0 .
    [CrossRef] [PubMed]
  11. M. J. Conelly, Semiconductor Optical Amplifiers (Kluwer Academic Press, 2002).
  12. A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19(20), 19233–19244 (2011).
    [CrossRef] [PubMed]
  13. L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE 7753, 775322 (2011).
    [CrossRef]
  14. M. Niklés, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]

2012

2011

2010

2008

2007

1999

1997

M. Niklés, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1989

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[CrossRef] [PubMed]

T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Angulo-Vinuesa, X.

Ania-Castañón, J. D.

Bao, X.

Bernini, R.

Bolognini, G.

Carrasco-Sanz, A.

Chen, L.

Corredera, P.

Di Pasquale, F.

Foaleng, S. M.

Foaleng Mafang, S.

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE 7753, 775322 (2011).
[CrossRef]

Gonzalez-Herraez, M.

González-Herráez, M.

Horiguchi, T.

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[CrossRef] [PubMed]

T. Horiguchi and M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Li, W.

Li, Y.

Lin, J.

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE 7753, 775322 (2011).
[CrossRef]

Martin-Lopez, S.

Minardo, A.

Naruse, H.

Niklés, M.

M. Niklés, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Nuno, J.

Robert, P. A.

M. Niklés, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Rodriguez-Barrios, F.

Rodríguez-Barrios, F.

Soto, M. A.

Tateda, M.

Thévenaz, L.

Zeni, L.

Appl. Opt.

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

L. Thévenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE 7753, 775322 (2011).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. J. Conelly, Semiconductor Optical Amplifiers (Kluwer Academic Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the Raman-assisted distributed sub-meter Brillouin sensor. LD: Laser Diode; PC: Polarization Controller; SOA: Semiconductor Optical Amplifier; EDFA: Erbium Doped Fiber Amplifier; VOA: Variable Optical Attenuator; WDM: Wavelength Division Multiplexer; FUT: Fiber Under Test; PS: Polarization Scrambler.

Fig. 2
Fig. 2

Illustration of the effect of the RFL RIN transfer problem on the measurement and the strategy to avoid it. (a) Shows the intensity noise spectrum of the RFL used in the experiment, at the employed power values (500 mW). Since the RFL shows a chain of modes in the spectrum, its output displays some quasi-periodic intensity perturbations in multiple frequencies of the free spectral range of the laser. These quasi-periodic perturbations are transferred to the probe signal and may not be easily averaged out in the acquisition procedure if the acquisition trigger period is a multiple of the cavity round-trip time: 2(b). In the trace FFT spectrum, this effect appears as discrete “peaks” (see 2(c)) which can be easily removed with a digital filtering technique.

Fig. 3
Fig. 3

Brillouin gain sweep for the complete fiber length. The probe signal frequency is swept from 10.66 GHz until 10.78 GHz and the traces are acquired with 65 ns pulses.

Fig. 4
Fig. 4

Brillouin gain sweep around the hot spot (located around km 74.34). The probe signal frequency is swept from 10.66 GHz until 10.78 GHz with (a) 65 ns pulses and (b) 55 ns pulses. The traces are not de-noised, therefore periodic noise is visible at some positions.

Fig. 5
Fig. 5

Result of the subtraction between the 65 ns and 55 ns Brillouin gain traces for the 1 meter hot-spot (a) with the de-noising procedure and (b) without the de-noising procedure (100 meter span); (c) gain profile obtained at the position of the hot-spot; (d) BFS representation with and without the de-noising procedure (blue and red traces respectively).

Fig. 6
Fig. 6

(a) Result of the subtraction between the 65 ns and 57 ns Brillouin gain traces for the 0.8 meter hot-spot with the de-noising procedure (50 meter span); (b) gain profile obtained at the position of the hot-spot; (c) BFS representation.

Fig. 7
Fig. 7

(a) Result of the subtraction between the 65 ns and 60 ns Brillouin gain traces for the 0.5 meter hot-spot with the de-noising procedure (100 meter span); (b) gain profile obtained at the position of the hot-spot; (c) BFS representation.

Metrics