Abstract

A novel refractive index sensor based on the two dimensional photonic crystal folded Michelson interferometer employing the self-collimation effect is proposed and its performances are theoretically investigated. Two sensing areas are included in the sensor. Simulation results indicate the branch area is suitable for the small index variety range and fine detection, whereas the reflector area prone to the large index change range and coarse detection. Because of no defect waveguides and no crosstalk of signal, the sensor is desirable to perform monolithic integrated, low-cost, label-free real-time parallel sensing. In addition, a flexible design of self-collimation sensors array is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28(3), 236–238 (1992).
    [CrossRef]
  2. S. J. Spammer, P. L. Swart, and A. Booysen, “Interferometric distributed optical-fiber sensor,” Appl. Opt. 35(22), 4522–4525 (1996).
    [CrossRef] [PubMed]
  3. B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
    [CrossRef]
  4. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
    [CrossRef]
  5. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
    [CrossRef]
  6. S. Chakravarty, J. Topol’ančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, “Ion detection with photonic crystal microcavities,” Opt. Lett. 30(19), 2578–2580 (2005).
    [CrossRef] [PubMed]
  7. J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
    [CrossRef]
  8. S. Xiao and N. A. Mortensen, “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A, Pure Appl. Opt. 9(9), S463–S467 (2007).
    [CrossRef]
  9. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
    [CrossRef] [PubMed]
  10. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16(9), 6515–6527 (2008).
    [CrossRef] [PubMed]
  11. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
    [CrossRef] [PubMed]
  12. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  13. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
    [CrossRef] [PubMed]
  14. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
    [CrossRef]
  15. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
    [CrossRef]
  16. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystal,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
    [CrossRef]
  17. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
    [CrossRef]
  18. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007).
    [CrossRef] [PubMed]
  19. X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17(22), 19808–19813 (2009).
    [CrossRef] [PubMed]
  20. T. T. Kim, S. G. Lee, H. Y. Park, J. E. Kim, and C. S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18(6), 5384–5389 (2010).
    [CrossRef] [PubMed]
  21. H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro, “Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal,” Opt. Express 18(7), 6437–6446 (2010).
    [CrossRef] [PubMed]
  22. T. Yamashita and C. J. Summers, “Evaluation of self-collimated beams in photonic crystal for optical interconnect,” IEEE J. Sel. Areas Commun. 23(7), 1341–1347 (2005).
    [CrossRef]
  23. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
    [CrossRef] [PubMed]
  24. J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
    [CrossRef]
  25. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
    [CrossRef] [PubMed]
  26. Y. Wang, W. Zhou, A. Liu, W. Chen, F. Fu, X. Yan, B. Jiang, Q. Xue, and W. Zheng, “Optical properties of the crescent and coherent applications,” Opt. Express 19(9), 8303–8311 (2011).
    [CrossRef] [PubMed]
  27. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [CrossRef] [PubMed]
  28. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010).
    [CrossRef] [PubMed]
  29. R. Martin, A. Sharkawy, and E. Kelmelis, “Photonic crystal reduce the size of optical sensors,” SPIE Newsroom, 10.1117/2.1200610.0413 (2006).
    [CrossRef]
  30. Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
    [CrossRef]
  31. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
    [CrossRef] [PubMed]

2011 (3)

2010 (6)

2009 (1)

2008 (2)

2007 (6)

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007).
[CrossRef] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
[CrossRef] [PubMed]

Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
[CrossRef]

S. Xiao and N. A. Mortensen, “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A, Pure Appl. Opt. 9(9), S463–S467 (2007).
[CrossRef]

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

2006 (2)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Yamashita and C. J. Summers, “Evaluation of self-collimated beams in photonic crystal for optical interconnect,” IEEE J. Sel. Areas Commun. 23(7), 1341–1347 (2005).
[CrossRef]

S. Chakravarty, J. Topol’ančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, “Ion detection with photonic crystal microcavities,” Opt. Lett. 30(19), 2578–2580 (2005).
[CrossRef] [PubMed]

2003 (3)

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[CrossRef]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystal,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

1999 (2)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

1997 (1)

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

1996 (1)

1992 (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28(3), 236–238 (1992).
[CrossRef]

Assefa, S.

Baba, T.

Becker, J.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28(3), 236–238 (1992).
[CrossRef]

Bhattacharya, P.

S. Chakravarty, J. Topol’ančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, “Ion detection with photonic crystal microcavities,” Opt. Lett. 30(19), 2578–2580 (2005).
[CrossRef] [PubMed]

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[CrossRef]

Booysen, A.

Brecht, A.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

Caro, J.

Chakrabarti, S.

Chakravarty, S.

Chen, C.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Chen, W.

Chen, X.

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17(22), 19808–19813 (2009).
[CrossRef] [PubMed]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
[CrossRef]

Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
[CrossRef]

Choi, J. H.

Dahlem, M. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Drapp, B.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

Dulashko, Y.

Dunbar, L. A.

Dundar, M. A.

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

El Beheiry, M.

Endo, T.

Erickson, D.

Fan, S.

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystal,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

Fan, X.

Fu, F.

Gauglitz, G.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Hachuda, S.

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Hohenester, U.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[CrossRef]

Hong, H.

Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
[CrossRef]

Houdré, R.

Ibanescu, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Imai, Y.

Ingenhoff, J.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

Ippen, E. P.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Jakab, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[CrossRef]

Ji, Y.

Jiang, B.

Jiang, X.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
[CrossRef]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Kang, C.

Kang, Y.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Kee, C. S.

Kersey, A. D.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28(3), 236–238 (1992).
[CrossRef]

Kim, J. E.

Kim, S. H.

Kim, T. T.

Kita, S.

Kolodziejski, L. A.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Kotlyar, M. V.

Krauss, T. F.

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Le Thomas, N.

Lee, S. G.

Lee, S. K.

Lee, Y. H.

Levi, O.

Li, H.

Lin, G.

Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
[CrossRef]

Liu, A.

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Liu, V.

Loncar, M.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Luff, B. J.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

Mandal, S.

Martin, R.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Meyerhoff, M. E.

Miao, B.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Misawa, H.

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28(3), 236–238 (1992).
[CrossRef]

Mortensen, N. A.

S. Xiao and N. A. Mortensen, “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A, Pure Appl. Opt. 9(9), S463–S467 (2007).
[CrossRef]

Murakowski, J.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Nguyen, H. M.

Nishijima, Y.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

O’Faolain, L.

Otsuka, S.

Park, H. Y.

Petrich, G. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Phare, C. T.

Piehler, J.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

Prather, D. W.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Qiang, Z.

Qiu, Y.

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17(22), 19808–19813 (2009).
[CrossRef] [PubMed]

Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Rakich, P. T.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Regrency, P.

Rogge, S.

Sabarinathan, J.

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[CrossRef]

Salemink, H. W. M.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Schneider, G. J.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Seassal, C.

Sharkawy, A.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Shi, S.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Soljacic, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Sönnichsen, C.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[CrossRef]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Spammer, S. J.

Sumetsky, M.

Summers, C. J.

T. Yamashita and C. J. Summers, “Evaluation of self-collimated beams in photonic crystal for optical interconnect,” IEEE J. Sel. Areas Commun. 23(7), 1341–1347 (2005).
[CrossRef]

Swart, P. L.

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Tandon, S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Tian, H.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

Topol’ancik, J.

S. Chakravarty, J. Topol’ančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, “Ion detection with photonic crystal microcavities,” Opt. Lett. 30(19), 2578–2580 (2005).
[CrossRef] [PubMed]

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[CrossRef]

Trügler, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[CrossRef]

van der Drift, E. W. J. M.

van der Heijden, R. W.

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Viktorovitch, P.

Vlasov, Y. A.

Wang, Y.

Y. Wang, W. Zhou, A. Liu, W. Chen, F. Fu, X. Yan, B. Jiang, Q. Xue, and W. Zheng, “Optical properties of the crescent and coherent applications,” Opt. Express 19(9), 8303–8311 (2011).
[CrossRef] [PubMed]

Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
[CrossRef]

Weiss, S. M.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Wilkinson, J. S.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

Windeler, R. S.

Xiao, S.

S. Xiao and N. A. Mortensen, “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A, Pure Appl. Opt. 9(9), S463–S467 (2007).
[CrossRef]

Xue, Q.

Yamashita, T.

T. Yamashita and C. J. Summers, “Evaluation of self-collimated beams in photonic crystal for optical interconnect,” IEEE J. Sel. Areas Commun. 23(7), 1341–1347 (2005).
[CrossRef]

Yan, X.

Yang, D.

Yang, S. M.

Yang, W.

Yao, P.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
[CrossRef]

Yu, P.-C.

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[CrossRef]

Yu, X.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystal,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

Zabelin, V.

Zhang, J.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
[CrossRef]

Zhao, D.

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17(22), 19808–19813 (2009).
[CrossRef] [PubMed]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
[CrossRef]

Zheng, W.

Zhou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

J. Topol’ančik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999).
[CrossRef]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystal,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007).
[CrossRef]

Electron. Lett. (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28(3), 236–238 (1992).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

T. Yamashita and C. J. Summers, “Evaluation of self-collimated beams in photonic crystal for optical interconnect,” IEEE J. Sel. Areas Commun. 23(7), 1341–1347 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

S. Xiao and N. A. Mortensen, “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A, Pure Appl. Opt. 9(9), S463–S467 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Nano Lett. (2)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Opt. Express (11)

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16(9), 6515–6527 (2008).
[CrossRef] [PubMed]

X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, “Polarization-independent drop filters based on photonic crystal self-collimation ring resonators,” Opt. Express 17(22), 19808–19813 (2009).
[CrossRef] [PubMed]

T. T. Kim, S. G. Lee, H. Y. Park, J. E. Kim, and C. S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18(6), 5384–5389 (2010).
[CrossRef] [PubMed]

H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro, “Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal,” Opt. Express 18(7), 6437–6446 (2010).
[CrossRef] [PubMed]

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010).
[CrossRef] [PubMed]

Y. Wang, W. Zhou, A. Liu, W. Chen, F. Fu, X. Yan, B. Jiang, Q. Xue, and W. Zheng, “Optical properties of the crescent and coherent applications,” Opt. Express 19(9), 8303–8311 (2011).
[CrossRef] [PubMed]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[CrossRef] [PubMed]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Plasmonics (1)

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[CrossRef]

Proc. SPIE (1)

Y. Wang, Y. Qiu, X. Chen, G. Lin, and H. Hong, “Wavelength division demultiplexing with photonic crystal self-collimation interference,” Proc. SPIE 6781, 678118 (2007).
[CrossRef]

Sens. Actuators B Chem. (2)

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interferometers as simazine immunoprobes,” Sens. Actuators B Chem. 39(1-3), 277–282 (1997).
[CrossRef]

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Other (1)

R. Martin, A. Sharkawy, and E. Kelmelis, “Photonic crystal reduce the size of optical sensors,” SPIE Newsroom, 10.1117/2.1200610.0413 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic structure of the FMSI. (b) Equal frequency contours of f = 0.255 c/a (big square) and f = 0.275 c/a (small square) as nsensor = 1.0 (solid lines) and 1.5 (dashed lines), respectively. (c) Band structures as r1 = 0.26 a and r2 = 0.392 a, respectively. The shaded area is the band gap as r2 = 0.392 a, which covers the self-collimation frequency range. The inset shows the perfect PhC formed by the square lattice air cylinders etched in silicon. (d) Transmittivity and reflectivity of the splitter.

Fig. 2
Fig. 2

(a) Transmission spectra of the FMSI as nsensor in RSA is changed from 1.0 to 1.5. The inset displays the third transmission peak as nsensor is varied between 1.0 and 1.15. (b) Band gap of M4 in the nsensor range. (c) Transmission spectrum of FMSI without M4. (d), (e) Steady-state magnetic field distributions of the light with frequency 0.2643 c/a as nsensor is 1.0 and 1.5, respectively. (f) FOM* of the sensor functioning in RSA.

Fig. 3
Fig. 3

(a) Transmission spectra as nsensor in BSA is increased from 1.00 to 1.15. The red arrow head indicates the red shift of one transmission peak. (b) Sensitivity obtained by the linear fit of the shifting peak wavelength. k is the slope. (c), (d) Steady-state magnetic field distributions of the light with frequency 0.2643 c/a as nsensor is 1.15 and 1.09, respectively.

Fig. 4
Fig. 4

Transmissions of the light with frequency 0.2643 c/a as nsensor is changed from 1.00 to 1.15 in the air cylinders of BSA (black dotted line) and RSA (red dotted line), respectively.

Fig. 5
Fig. 5

Schematic structure of the monolithic integrated parallel self-collimation sensors array. S1:1 represents energy reflection/transmission ratio of the splitter is 1:1 at the self-collimation central frequency, while S1:2 represents the ratio is 1:2. M is the reflector mirror. Except the integrated splitters and reflector mirrors, the perfect PhC is distributed in the blank place of the chip.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

FO M * =max| dI( λ ) / dn I( λ ) |
2[ n eff1 ( L 2 L sensor )+ n sensoreff1 L sensor +2 n effM1 L p n eff1 L 1 ]=j λ 1
2[ n eff2 ( L 2 L sensor )+ n sensoreff2 L sensor +2 n effM2 L p n eff2 L 1 ]=j λ 2
2Δ n sensoreff L sensor =jΔλ
FOM= sensitivity fwhm

Metrics