Abstract

a novel method for designing high channel-count fiber Bragg gratings (FBGs) is proposed. For the first time, tailored group delay is introduced into the target reflection spectra to obtain a more even distribution of the refractive index modulation. This approach results in the reduction of the maximum refractive index modulation to physically realizable levels. The maximum index modulation reduction factors are all greater than 5.5. This is a significant improvement compared with previously reported results. Numerical results show that the thus designed high channel-count FBG filters exhibit superior characteristics including 30 dB channel isolation, a flat-top and near 100% reflectivity in each channel.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Dai and J. P. Yao, “Design of high channel-count multichannel fiber Bragg gratings based on a largely chirped structure,” IEEE J. Quantum Electron.45(8), 964–971 (2009).
    [CrossRef]
  2. M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, “Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WK1.
  3. Y. Painchaud and M. Morin, “Iterative method for the design of arbitrary multi-channel fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuB1.
  4. Y. Painchaud, M. Poulin, M. Morin, and M. Guy, “Fiber Bragg grating based dispersion compensator slope-matched for LEAF fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThE2.
  5. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett.26(11), 774–776 (2001).
    [CrossRef] [PubMed]
  6. Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
    [CrossRef]
  7. D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett.17(10), 2173–2175 (2005).
    [CrossRef]
  8. K. H. Wen, L. S. Yan, W. Pan, B. Luo, X. H. Zou, J. Ye, and Y. N. Ma, “Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design,” Appl. Opt.48(29), 5438–5444 (2009).
    [CrossRef] [PubMed]
  9. M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett.21(13), 926–928 (2009).
    [CrossRef]
  10. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  11. Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multichannel fiber Bragg grating,” J. Lightwave Technol.24(3), 1571–1580 (2006).
    [CrossRef]
  12. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol.25(9), 2739–2750 (2007).
    [CrossRef]
  13. Y. Dai and J. P. Yao, “Multi-channel Bragg gratings based on nonuniform amplitude-only sampling,” Opt. Express16(15), 11216–11223 (2008).
    [CrossRef] [PubMed]
  14. X. Chen, J. Hayashi, and H. Li, “Simultaneous dispersion and dispersion-slope compensator based on a doubly sampled ultrahigh-channel-count fiber Bragg grating,” Appl. Opt.49(5), 823–828 (2010).
    [CrossRef] [PubMed]
  15. N. Q. Ngo, R. T. Zheng, J. H. Ng, S. C. Tjin, and L. N. Binh, “Optimization of fiber Bragg gratings using a hybrid optimization algorithm,” J. Lightwave Technol.25(3), 799–802 (2007).
    [CrossRef]
  16. G. Tremblay, J.-N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol.23(12), 4382–4386 (2005).
    [CrossRef]
  17. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron.39(1), 91–98 (2003).
    [CrossRef]
  18. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol.21(9), 2074–2083 (2003).
    [CrossRef]
  19. M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express17(10), 8382–8394 (2009).
    [CrossRef] [PubMed]
  20. Y. Gong, X. Liu, L. Wang, X. Hu, A. Lin, and W. Zhao, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightwave Technol.27(15), 3235–3240 (2009).
    [CrossRef]
  21. H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett.15(9), 1252–1254 (2003).
    [CrossRef]
  22. Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol.23(11), 3924–3930 (2005).
    [CrossRef]
  23. J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. dissertation, Norwegian Univ. Sci. and Technol., Trondheim, Norway (2000).
  24. A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron.39(8), 1018–1026 (2003).
    [CrossRef]
  25. M. Ibsen, M. K. Durkin, M. J. Cole, M. N. Zervas, and R. I. Laming, “Recent advances in long dispersion compensating fibre Bragg gratings,” in IEE Colloquium on Optical Fibre Gratings (Institution of Electrical Engineers, London, 1999), pp. 6/1–6/7.
  26. X. Shu, E. Turitsyna, and I. Bennion, “Broadband fiber Bragg grating with channelized dispersion,” Opt. Express15(17), 10733–10738 (2007).
    [CrossRef] [PubMed]
  27. J. B. Hawthorn, A. Buryak, and K. Kolossovski, “Optimization algorithm for ultrabroadband multichannel aperiodic fiber Bragg grating filters,” J. Opt. Soc. Am. A25(1), 153–158 (2008).
    [CrossRef]

2010

2009

2008

2007

2006

2005

2003

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron.39(1), 91–98 (2003).
[CrossRef]

H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett.15(9), 1252–1254 (2003).
[CrossRef]

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron.39(8), 1018–1026 (2003).
[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol.21(9), 2074–2083 (2003).
[CrossRef]

2001

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Bennion, I.

Bernier, M.

Binh, L. N.

Buryak, A.

Buryak, A. V.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron.39(1), 91–98 (2003).
[CrossRef]

Chan, H. P.

Chen, X.

Chu, P. L.

Dai, Y.

Y. Dai and J. P. Yao, “Design of high channel-count multichannel fiber Bragg gratings based on a largely chirped structure,” IEEE J. Quantum Electron.45(8), 964–971 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Multi-channel Bragg gratings based on nonuniform amplitude-only sampling,” Opt. Express16(15), 11216–11223 (2008).
[CrossRef] [PubMed]

Edvell, G.

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett.17(10), 2173–2175 (2005).
[CrossRef]

Englund, M. A.

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett.17(10), 2173–2175 (2005).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Fujii, T.

M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett.21(13), 926–928 (2009).
[CrossRef]

Gillet, J.-N.

Gong, Y.

Gwandu, B. A. L.

Hawthorn, J. B.

Hayashi, J.

Horowitz, M.

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron.39(8), 1018–1026 (2003).
[CrossRef]

Hu, X.

Hunter, D. B.

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett.17(10), 2173–2175 (2005).
[CrossRef]

Kolossovski, K.

Kolossovski, K. Y.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron.39(1), 91–98 (2003).
[CrossRef]

Li, H.

Li, M.

Li, Y.

Lin, A.

Liu, D.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
[CrossRef]

Liu, H.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
[CrossRef]

Liu, X.

Liu, Y.

Luo, B.

Ma, Y. N.

Ng, J. H.

Ngo, N. Q.

Ouyang, Y.

Pan, W.

Paul-Hus, G.

Rosenthal, A.

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron.39(8), 1018–1026 (2003).
[CrossRef]

Rothenberg, J. E.

Sheng, Y.

Shu, X.

Shum, P.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
[CrossRef]

Stepanov, D. Y.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron.39(1), 91–98 (2003).
[CrossRef]

Sun, Q.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
[CrossRef]

Tjin, S. C.

Tremblay, G.

Turitsyna, E.

Wang, J.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
[CrossRef]

Wang, L.

Wen, K. H.

Wu, Q.

Xia, L.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
[CrossRef]

Yan, L. S.

Yao, J. P.

Y. Dai and J. P. Yao, “Design of high channel-count multichannel fiber Bragg gratings based on a largely chirped structure,” IEEE J. Quantum Electron.45(8), 964–971 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Multi-channel Bragg gratings based on nonuniform amplitude-only sampling,” Opt. Express16(15), 11216–11223 (2008).
[CrossRef] [PubMed]

Ye, J.

Zhang, L.

Zhao, W.

Zheng, R. T.

Zou, X. H.

Appl. Opt.

IEEE J. Quantum Electron.

Y. Dai and J. P. Yao, “Design of high channel-count multichannel fiber Bragg gratings based on a largely chirped structure,” IEEE J. Quantum Electron.45(8), 964–971 (2009).
[CrossRef]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron.39(1), 91–98 (2003).
[CrossRef]

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron.39(8), 1018–1026 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett.21(13), 926–928 (2009).
[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett.20(11), 933–935 (2008).
[CrossRef]

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett.17(10), 2173–2175 (2005).
[CrossRef]

H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett.15(9), 1252–1254 (2003).
[CrossRef]

J. Lightwave Technol.

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol.25(9), 2739–2750 (2007).
[CrossRef]

Y. Gong, X. Liu, L. Wang, X. Hu, A. Lin, and W. Zhao, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightwave Technol.27(15), 3235–3240 (2009).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol.21(9), 2074–2083 (2003).
[CrossRef]

Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol.23(11), 3924–3930 (2005).
[CrossRef]

G. Tremblay, J.-N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol.23(12), 4382–4386 (2005).
[CrossRef]

Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multichannel fiber Bragg grating,” J. Lightwave Technol.24(3), 1571–1580 (2006).
[CrossRef]

N. Q. Ngo, R. T. Zheng, J. H. Ng, S. C. Tjin, and L. N. Binh, “Optimization of fiber Bragg gratings using a hybrid optimization algorithm,” J. Lightwave Technol.25(3), 799–802 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

M. Ibsen, M. K. Durkin, M. J. Cole, M. N. Zervas, and R. I. Laming, “Recent advances in long dispersion compensating fibre Bragg gratings,” in IEE Colloquium on Optical Fibre Gratings (Institution of Electrical Engineers, London, 1999), pp. 6/1–6/7.

J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. dissertation, Norwegian Univ. Sci. and Technol., Trondheim, Norway (2000).

M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, “Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WK1.

Y. Painchaud and M. Morin, “Iterative method for the design of arbitrary multi-channel fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuB1.

Y. Painchaud, M. Poulin, M. Morin, and M. Guy, “Fiber Bragg grating based dispersion compensator slope-matched for LEAF fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThE2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Designed 8-channel 50 GHz FBG filters with identical group delay. (a) Synthesized index modulation. (b) Comparison of the target reflectivity spectra (the solid line) and the reflectivity spectra of the synthesized grating (the dotted line). (c) Group delay response.

Fig. 2
Fig. 2

Evolution of reflectivity spectra over the grating length for the target reflectivity

Fig. 3
Fig. 3

The resynthesized index modulation and its corresponding spectral response. (a) Resynthesized index modulation. (b) Simulated group delay (the solid line) and simulated reflectivity spectra (the dotted line).

Fig. 4
Fig. 4

Evolution of reflectivity spectra over the grating length for the case of staircases group delay

Fig. 5
Fig. 5

Index modulation of the sub-grating (1-channel grating) with a 0.5-dB bandwidth of 0.2 nm, and a −30-dB bandwidth of 0.3 nm. The inset shows corresponding reflectivity spectra response.

Fig. 6
Fig. 6

Designed 80-channel (50 GHz spacing) FBG filter with flat group delay. (a) Index modulation (the green line) and the local chirp (the blue line). (b) Reflectivity spectra (the green line) and group delay response (the blue line). (c) Group delay and reflectivity at three channels (central wavelengths: 1535.04 nm, 1535.43 nm and 1535.82 nm)

Fig. 7
Fig. 7

Designed 80-channel (50GHz spacing) FBG filter with staircase group delay. (a) Index modulation (the green line) and the local chirp (the blue line). (b) Reflectivity spectra (the green line) and group delay response (the blue line).

Fig. 8
Fig. 8

Zoom-in of the simulated result with limiting the wavelength between 1546nm and 1554nm. Simulated reflectivity spectra (the green line) and group delay response (the blue line).

Fig. 9
Fig. 9

3-dB bandwidth performance statistics. (a) Variation of the 3-dB bandwidth of the reflectivity spectra with the channel number. (b) Variation of group delay ripples within the 3-dB bandwidth with channel number.

Fig. 10
Fig. 10

Designed 101-channel (50 GHz spacing) FBG filters with staircases group delay. (a) Synthesized index modulation (the green line) and the local chirp (the blue line). (b) Reflectivity spectra (the green line) and group delay (the blue line). The inset shows the details of spectra at the central channel (central wavelength: 1550.12nm)

Fig. 11
Fig. 11

Designed 101-channel (50 GHz spacing) FBG filters with the right wedge-shaped (‘>’) group delay profile. (a) Synthesized index modulation (the green line) and the local chirp (the blue line). (b) Reflectivity spectra (the green line) and group delay response (the blue line). The inset shows the details of spectra at two channels (central wavelengths: 1569.59 nm and 1570.01 nm).

Fig. 12
Fig. 12

Designed 101-channel nonuniformly spaced FBG filter with the left wedge shaped (‘<’) group delay. (a) Synthesized index modulation. (b) Reflectivity spectra. (c) The details of spectra at two channels (central wavelengths: 1538.98 nm and 1539.37 nm).

Tables (1)

Tables Icon

Table 1 Maximum Index Modulation and Reduction Factor for 8-,80-,and 101-channel FBG Filter

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r( λ )= 0.95 × j=1 M exp( ( 2π n eff a j ( 1 λ 1 λ j ) ) b j ) exp( i2π n eff ( 1 λ 1 λ 0 )L ) j=1,2,3M
r( λ )= 0.95 × j=1 M exp( ( 2π n eff a j ( 1 λ 1 λ j ) ) b j ) exp( i2π n eff ( 1 λ 1 λ 0 ) d k ) j=1,2,3M
d k =2×[ L L +( k1 )× L step ], k=1,2,,M
L step = L( L R + L L ) M1 ,
r( λ )= 0.95 × j=1 80 exp( ( 2π n eff a j ( 1 λ 1 λ j ) ) b j ) exp( i2π n eff ( 1 λ 1 λ 0 )L ) j=1,2,380

Metrics