M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).

[CrossRef]
[PubMed]

Y. Gong, X. Liu, L. Wang, X. Hu, A. Lin, and W. Zhao, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightwave Technol. 27(15), 3235–3240 (2009).

[CrossRef]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, X. H. Zou, J. Ye, and Y. N. Ma, “Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design,” Appl. Opt. 48(29), 5438–5444 (2009).

[CrossRef]
[PubMed]

Y. Dai and J. P. Yao, “Design of high channel-count multichannel fiber Bragg gratings based on a largely chirped structure,” IEEE J. Quantum Electron. 45(8), 964–971 (2009).

[CrossRef]

M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(13), 926–928 (2009).

[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

J. B. Hawthorn, A. Buryak, and K. Kolossovski, “Optimization algorithm for ultrabroadband multichannel aperiodic fiber Bragg grating filters,” J. Opt. Soc. Am. A 25(1), 153–158 (2008).

[CrossRef]

Y. Dai and J. P. Yao, “Multi-channel Bragg gratings based on nonuniform amplitude-only sampling,” Opt. Express 16(15), 11216–11223 (2008).

[CrossRef]
[PubMed]

N. Q. Ngo, R. T. Zheng, J. H. Ng, S. C. Tjin, and L. N. Binh, “Optimization of fiber Bragg gratings using a hybrid optimization algorithm,” J. Lightwave Technol. 25(3), 799–802 (2007).

[CrossRef]

X. Shu, E. Turitsyna, and I. Bennion, “Broadband fiber Bragg grating with channelized dispersion,” Opt. Express 15(17), 10733–10738 (2007).

[CrossRef]
[PubMed]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).

[CrossRef]

Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23(11), 3924–3930 (2005).

[CrossRef]

G. Tremblay, J.-N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23(12), 4382–4386 (2005).

[CrossRef]

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett. 17(10), 2173–2175 (2005).

[CrossRef]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).

[CrossRef]

H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).

[CrossRef]

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).

[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).

[CrossRef]

X. Shu, E. Turitsyna, and I. Bennion, “Broadband fiber Bragg grating with channelized dispersion,” Opt. Express 15(17), 10733–10738 (2007).

[CrossRef]
[PubMed]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).

[CrossRef]
[PubMed]

G. Tremblay, J.-N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23(12), 4382–4386 (2005).

[CrossRef]

Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23(11), 3924–3930 (2005).

[CrossRef]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).

[CrossRef]

X. Chen, J. Hayashi, and H. Li, “Simultaneous dispersion and dispersion-slope compensator based on a doubly sampled ultrahigh-channel-count fiber Bragg grating,” Appl. Opt. 49(5), 823–828 (2010).

[CrossRef]
[PubMed]

M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).

[CrossRef]
[PubMed]

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett. 17(10), 2173–2175 (2005).

[CrossRef]

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett. 17(10), 2173–2175 (2005).

[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).

[CrossRef]

M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(13), 926–928 (2009).

[CrossRef]

X. Chen, J. Hayashi, and H. Li, “Simultaneous dispersion and dispersion-slope compensator based on a doubly sampled ultrahigh-channel-count fiber Bragg grating,” Appl. Opt. 49(5), 823–828 (2010).

[CrossRef]
[PubMed]

M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).

[CrossRef]
[PubMed]

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).

[CrossRef]

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett. 17(10), 2173–2175 (2005).

[CrossRef]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).

[CrossRef]

X. Chen, J. Hayashi, and H. Li, “Simultaneous dispersion and dispersion-slope compensator based on a doubly sampled ultrahigh-channel-count fiber Bragg grating,” Appl. Opt. 49(5), 823–828 (2010).

[CrossRef]
[PubMed]

M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(13), 926–928 (2009).

[CrossRef]

M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).

[CrossRef]
[PubMed]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).

[CrossRef]

H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).

[CrossRef]

M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).

[CrossRef]
[PubMed]

M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(13), 926–928 (2009).

[CrossRef]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).

[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

G. Tremblay, J.-N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23(12), 4382–4386 (2005).

[CrossRef]

Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23(11), 3924–3930 (2005).

[CrossRef]

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).

[CrossRef]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).

[CrossRef]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).

[CrossRef]

G. Tremblay, J.-N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23(12), 4382–4386 (2005).

[CrossRef]

Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23(11), 3924–3930 (2005).

[CrossRef]

H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).

[CrossRef]

X. Shu, E. Turitsyna, and I. Bennion, “Broadband fiber Bragg grating with channelized dispersion,” Opt. Express 15(17), 10733–10738 (2007).

[CrossRef]
[PubMed]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).

[CrossRef]
[PubMed]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).

[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, X. H. Zou, J. Ye, and Y. N. Ma, “Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design,” Appl. Opt. 48(29), 5438–5444 (2009).

[CrossRef]
[PubMed]

X. Chen, J. Hayashi, and H. Li, “Simultaneous dispersion and dispersion-slope compensator based on a doubly sampled ultrahigh-channel-count fiber Bragg grating,” Appl. Opt. 49(5), 823–828 (2010).

[CrossRef]
[PubMed]

Y. Dai and J. P. Yao, “Design of high channel-count multichannel fiber Bragg gratings based on a largely chirped structure,” IEEE J. Quantum Electron. 45(8), 964–971 (2009).

[CrossRef]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).

[CrossRef]

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).

[CrossRef]

M. Li, T. Fujii, and H. Li, “Multiplication of a multichannel notch filter based on a phase-shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 21(13), 926–928 (2009).

[CrossRef]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).

[CrossRef]

D. B. Hunter, M. A. Englund, and G. Edvell, “Multichannel fiber gratings with tailored dispersion profiles for RF filtering,” IEEE Photon. Technol. Lett. 17(10), 2173–2175 (2005).

[CrossRef]

H. Li and Y. Sheng, “Direct design of multi-channel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photon. Technol. Lett. 15(9), 1252–1254 (2003).

[CrossRef]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).

[CrossRef]

Y. Gong, X. Liu, L. Wang, X. Hu, A. Lin, and W. Zhao, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightwave Technol. 27(15), 3235–3240 (2009).

[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).

[CrossRef]

Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul-Hus, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23(11), 3924–3930 (2005).

[CrossRef]

G. Tremblay, J.-N. Gillet, Y. Sheng, M. Bernier, and G. Paul-Hus, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23(12), 4382–4386 (2005).

[CrossRef]

Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multichannel fiber Bragg grating,” J. Lightwave Technol. 24(3), 1571–1580 (2006).

[CrossRef]

N. Q. Ngo, R. T. Zheng, J. H. Ng, S. C. Tjin, and L. N. Binh, “Optimization of fiber Bragg gratings using a hybrid optimization algorithm,” J. Lightwave Technol. 25(3), 799–802 (2007).

[CrossRef]

Y. Dai and J. P. Yao, “Multi-channel Bragg gratings based on nonuniform amplitude-only sampling,” Opt. Express 16(15), 11216–11223 (2008).

[CrossRef]
[PubMed]

M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).

[CrossRef]
[PubMed]

X. Shu, E. Turitsyna, and I. Bennion, “Broadband fiber Bragg grating with channelized dispersion,” Opt. Express 15(17), 10733–10738 (2007).

[CrossRef]
[PubMed]

M. Ibsen, M. K. Durkin, M. J. Cole, M. N. Zervas, and R. I. Laming, “Recent advances in long dispersion compensating fibre Bragg gratings,” in IEE Colloquium on Optical Fibre Gratings (Institution of Electrical Engineers, London, 1999), pp. 6/1–6/7.

J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. dissertation, Norwegian Univ. Sci. and Technol., Trondheim, Norway (2000).

M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, “Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WK1.

Y. Painchaud and M. Morin, “Iterative method for the design of arbitrary multi-channel fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuB1.

Y. Painchaud, M. Poulin, M. Morin, and M. Guy, “Fiber Bragg grating based dispersion compensator slope-matched for LEAF fiber,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThE2.