Abstract

A novel microstructure based temperature sensor system using hybrid wavelength-division-multiplexing /frequency-division-multiplexing (WDM/FDM) is proposed. The sensing unit is a specially designed microstructure sensor both frequency and wavelength encoded, as well as low insertion loss which makes it have the potential to be densely multiplexed along one fiber. Moreover, the microstructure can be simply fabricated by UV light irradiation on commercial single-mode fiber. Assisted with appropriate demodulation algorithm, the temperature distribution along the fiber can be calculated accurately. In theory, more than 1000 sensors can be multiplexed on one fiber. We experimentally demonstrated the feasibility of the scheme through building a sensor system with 9 microstructures multiplexing and with temperature resolution of 0.4°C

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Inaudi, “Photonic sensing technology in civil engineering,” in Handbook of Optical Fibre Sensing Technology (Wiley, New York, 2002), pp. 517–542.
  2. J. M. López-Higuera, L. Rodriguez Cobo, A. Quintela Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol.29(4), 587–608 (2011).
    [CrossRef]
  3. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
    [CrossRef]
  4. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett.18(1), 78–80 (1993).
    [CrossRef] [PubMed]
  5. H. F. Taylor, “Fiber optic sensors based upon the Fabry–Pérot interferometer,” in Fiber Optic Sensors (Marcel Dekker, New York, 2002), pp. 41–74.
  6. Y. J. Rao and D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
    [CrossRef]
  7. D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
    [CrossRef] [PubMed]
  8. B. Qi, G. Pickrell, P. Zhang, Y. Duan, W. Peng, J. Xu, Z. Huang, J. Deng, H. Xiao, Z. Wang, W. Huo, R. G. May, and A. Wang, “Fiber optic pressure and temperature sensors for oil down hole application,” presented at the Fiber Optic Sensor Technol. Applications Conference (Newton, MA, 2001).
  9. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
    [CrossRef]
  10. T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt.42(6), 1003–1007 (2003).
    [CrossRef] [PubMed]
  11. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
    [CrossRef]
  12. P. Betts and J. A. Davis, “Bragg grating Fabry–Pérot interferometer with variable finesse,” Opt. Eng.43(5), 1258–1259 (2004).
    [CrossRef]
  13. J. Canning, “Fiber Bragg gratings and devices for sensors and lasers,” Laser Photonics Rev.2(4), 275–289 (2008).
    [CrossRef]
  14. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  15. A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamental and Applications in Telecommunications and Sensing (Artech House, Norwood, 1999), pp. 366–389.
  16. M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
    [CrossRef]
  17. Z. G. Guan, D. Chen, and S. He, “Coherence multiplexing of distributed sensors based on pairs of fiber Bragg gratings of low reflectivity,” J. Lightwave Technol.25(8), 2143–2148 (2007).
    [CrossRef]
  18. R. Slavík, S. Doucet, and S. LaRochelle, “High-performance all-fiber Fabry–Pérot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol.21(4), 1059–1065 (2003).
    [CrossRef]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]

2012

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

2011

2008

J. Canning, “Fiber Bragg gratings and devices for sensors and lasers,” Laser Photonics Rev.2(4), 275–289 (2008).
[CrossRef]

2007

2004

P. Betts and J. A. Davis, “Bragg grating Fabry–Pérot interferometer with variable finesse,” Opt. Eng.43(5), 1258–1259 (2004).
[CrossRef]

2003

2000

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

1996

Y. J. Rao and D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

1995

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

1993

1992

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Atkins, R. A.

T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt.42(6), 1003–1007 (2003).
[CrossRef] [PubMed]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

Bae, T.

Belleville, C.

Bennion, I.

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

Betts, P.

P. Betts and J. A. Davis, “Bragg grating Fabry–Pérot interferometer with variable finesse,” Opt. Eng.43(5), 1258–1259 (2004).
[CrossRef]

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Canning, J.

J. Canning, “Fiber Bragg gratings and devices for sensors and lasers,” Laser Photonics Rev.2(4), 275–289 (2008).
[CrossRef]

Chen, D.

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Cobo, A.

Davis, J. A.

P. Betts and J. A. Davis, “Bragg grating Fabry–Pérot interferometer with variable finesse,” Opt. Eng.43(5), 1258–1259 (2004).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Doucet, S.

Duplain, G.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Gibler, W. N.

T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt.42(6), 1003–1007 (2003).
[CrossRef] [PubMed]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Guan, Z. G.

Hathaway, M. W.

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

He, S.

Jackson, D. A.

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

Y. J. Rao and D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Jones, S.

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

LaRochelle, S.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Lee, C. E.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

Li, X. L.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Liu, D. M.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Liu, H. R.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

López-Higuera, J. M.

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Quintela Incera, A.

Rao, Y. J.

Y. J. Rao and D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

Rodriguez Cobo, L.

Slavík, R.

Sun, Q. Z.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Taylor, H. F.

T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt.42(6), 1003–1007 (2003).
[CrossRef] [PubMed]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Wang, Z.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Webb, D. J.

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

Zhang, L.

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

Zhang, M. L.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Appl. Opt.

J. Biomed. Opt.

D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” J. Biomed. Opt.5(1), 45–50 (2000).
[CrossRef] [PubMed]

J. Lightwave Technol.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot-interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Pérot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol.10(10), 1376–1379 (1992).
[CrossRef]

R. Slavík, S. Doucet, and S. LaRochelle, “High-performance all-fiber Fabry–Pérot filters with superimposed chirped Bragg gratings,” J. Lightwave Technol.21(4), 1059–1065 (2003).
[CrossRef]

Z. G. Guan, D. Chen, and S. He, “Coherence multiplexing of distributed sensors based on pairs of fiber Bragg gratings of low reflectivity,” J. Lightwave Technol.25(8), 2143–2148 (2007).
[CrossRef]

J. M. López-Higuera, L. Rodriguez Cobo, A. Quintela Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol.29(4), 587–608 (2011).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Laser Photonics Rev.

J. Canning, “Fiber Bragg gratings and devices for sensors and lasers,” Laser Photonics Rev.2(4), 275–289 (2008).
[CrossRef]

Meas. Sci. Technol.

Y. J. Rao and D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

Opt. Commun.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. L. Li, H. R. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Opt. Eng.

P. Betts and J. A. Davis, “Bragg grating Fabry–Pérot interferometer with variable finesse,” Opt. Eng.43(5), 1258–1259 (2004).
[CrossRef]

Opt. Lett.

Smart Mater. Struct.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry–Pérot interferometric strain sensors,” Smart Mater. Struct.4(4), 240–245 (1995).
[CrossRef]

Other

A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamental and Applications in Telecommunications and Sensing (Artech House, Norwood, 1999), pp. 366–389.

B. Qi, G. Pickrell, P. Zhang, Y. Duan, W. Peng, J. Xu, Z. Huang, J. Deng, H. Xiao, Z. Wang, W. Huo, R. G. May, and A. Wang, “Fiber optic pressure and temperature sensors for oil down hole application,” presented at the Fiber Optic Sensor Technol. Applications Conference (Newton, MA, 2001).

D. Inaudi, “Photonic sensing technology in civil engineering,” in Handbook of Optical Fibre Sensing Technology (Wiley, New York, 2002), pp. 517–542.

H. F. Taylor, “Fiber optic sensors based upon the Fabry–Pérot interferometer,” in Fiber Optic Sensors (Marcel Dekker, New York, 2002), pp. 41–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the microstructure sensor. (b) Diagram of the microstructure fabrication platform.

Fig. 2
Fig. 2

(a) Reflective spectrum of an ultra-short FBG. (b) Reflect spectrum of the microstructure sensor composed of two identical spaced ultra-short FBGs.

Fig. 3
Fig. 3

Flow chart of data processing program.

Fig. 4
Fig. 4

Experimental setup of the microstructure temperature sensor system.

Fig. 5
Fig. 5

The reflection spectrum of the 9 sensors and the FFT spectra of three groups at the room temperature.

Fig. 6
Fig. 6

The recovered spectra of two typical sensors at different temperatures: (a) the sensor S3-1 (Λ = 537.78nm, d = 2mm) (b) the sensor S1-3 (Λ = 532.6nm, d = 6mm).

Fig. 7
Fig. 7

(a) Experimental results of the sensors d = 2mm, d = 4mm, d = 6mm while Λ = 537.78nm. (b) Experimental results of the sensors Λ = 527.43nm, Λ = 532.6nm, Λ = 537.78nm while d = 6mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R G = sin h 2 ( k 2 σ ^ 2 L) cos h 2 ( k 2 σ ^ 2 L) σ ^ 2 k 2 ,
k= k * = π λ ν δ n eff ¯ ,
σ ^ =2π n eff ( 1 λ 1 λ D )+ 2π λ δ n eff ¯ .
R S =2 R G [1+cos(4π n eff L c /λ)].
2 n eff L c =mλ.

Metrics