Abstract

The measurement ability of the conventional Phase diversity wavefront sensor (C-PD WFS) is limited by the accuracy and dynamic range of CCD cameras. In this letter, a modified Phase diversity wavefront sensor based on a diffraction grating (G-PD WFS) is proposed. We build a corresponding experimental setup to compare the measurement accuracy of the G-PD WFS and the C-GPDWFS under the same experimental conditions. The experimental results show that the measurement ability of G-PD WFS is improved obviously, especially for the wavefront aberration with larger amplitude.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hardy, “Adaptive optics: a progress review,” Proc. SPIE 1542, 2–17 (1991).
    [CrossRef]
  2. R. A. Gonsalves and R. C. Hidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing, Proc. SPIE 207, 32–39 (1979).
  3. J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).
  4. P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38(32), 6692–6699 (1999).
    [CrossRef] [PubMed]
  5. P. M. Blanchard, D. J. Fisher, S. C. Woods, and A. H. Greenaway, “Phase diversity wavefront sensing with a distorted diffraction grating,” Appl. Opt. 39(35), 6649–6655 (2000).
    [CrossRef] [PubMed]
  6. H. I. Campbell, S. Zhang, A. H. Greenaway, and S. Restaino, “Generalized phase diversity for wave-front sensing,” Opt. Lett. 29(23), 2707–2709 (2004).
    [CrossRef] [PubMed]
  7. N. Baba and K. Mutoh, “Measurement of telescope aberrations through atmospheric turbulence by use of phase diversity,” Appl. Opt. 40(4), 544–552 (2001).
    [CrossRef] [PubMed]

2004 (1)

2001 (1)

2000 (2)

P. M. Blanchard, D. J. Fisher, S. C. Woods, and A. H. Greenaway, “Phase diversity wavefront sensing with a distorted diffraction grating,” Appl. Opt. 39(35), 6649–6655 (2000).
[CrossRef] [PubMed]

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).

1999 (1)

1991 (1)

J. W. Hardy, “Adaptive optics: a progress review,” Proc. SPIE 1542, 2–17 (1991).
[CrossRef]

1979 (1)

R. A. Gonsalves and R. C. Hidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing, Proc. SPIE 207, 32–39 (1979).

Baba, N.

Benson, L.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).

Blanchard, P. M.

Campbell, H. I.

Fisher, D. J.

Gonsalves, R. A.

R. A. Gonsalves and R. C. Hidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing, Proc. SPIE 207, 32–39 (1979).

Greenaway, A. H.

Hardy, J. W.

J. W. Hardy, “Adaptive optics: a progress review,” Proc. SPIE 1542, 2–17 (1991).
[CrossRef]

Hidlaw, R. C.

R. A. Gonsalves and R. C. Hidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing, Proc. SPIE 207, 32–39 (1979).

Mutoh, K.

Paxman, R. G.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).

Restaino, S.

Seldin, J. H.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).

Stone, R. E.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).

Woods, S. C.

Zarifis, V. G.

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).

Zhang, S.

Appl. Opt. (3)

Opt. Lett. (1)

Proc. SPIE (2)

J. W. Hardy, “Adaptive optics: a progress review,” Proc. SPIE 1542, 2–17 (1991).
[CrossRef]

R. A. Gonsalves and R. C. Hidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing, Proc. SPIE 207, 32–39 (1979).

SPIE (1)

J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” in Imaging Technology and Telescopes, SPIE 4091, 48–63 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the G-PD WFS. d: defocused distance, B.S.: beam splitter

Fig. 2
Fig. 2

Focal image

Fig. 3
Fig. 3

Experimental setup of G-PD WFS. Lenses are denoted by L prefix, M: reflective mirror, S.F.: spatial filter, Aperture: circle iris, B.S.: beam splitter, LC-SLM: liquid-crystal spatial light modulator, Grating: one-dimensional diffraction grating

Fig. 4
Fig. 4

Random wavefront aberration Ф0. (a) Phase distribution, (b) The coefficients of Zernike polynomials

Fig. 5
Fig. 5

Experimental images of G-PD WFS. (a) Captured focal image, (b) Captured defocused image, (c) Calculated focal image, (d) Calculated defocused image

Fig. 6
Fig. 6

Experimental images of C-PD WFS. (a) Focal image, (b) Defocused image

Fig. 7
Fig. 7

Experimental results. (a) The estimated wavefront of G-PD WFS, (b) The residual aberration ∆ФG, (c) The estimated wavefront of C-PD WFS. (d) The residual aberration ∆ФC, (e) The Zernike coefficients of ФG and Ф0, (f) The Zernike coefficients of ФC and Ф0, (g) The Zernike coefficients of ∆ФG and ∆ФC

Tables (1)

Tables Icon

Table 1 Experimental Results of G-PD WFS and C-PD WFS

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I f = I f +n= | FFT{ pexpiφ } | 2 +n I d = I d +n= | FFT{ pexpi[ φ+ φ d ] } | 2 +n
E= [ | I f I f | 2 + | I d I d | 2 ]
t(r)=[ 1 2 + m 2 cos(2π f 0 x) ]rect( x 2 L x )rect( y 2 L y )
I g η 0 I+ η ±1 [I(uλf f 0 ,v)+I(u+λf f 0 ,v)]
Φ d PV = d 8λ ( F # ) 2
RMSE= (ΔΦ) ij 2 / N 2

Metrics