Abstract

In this work, a high-power and broadband quantum dot superluminescent diode (QD-SLD) is achieved by using a two-section structure. The QD-SLD device consists of a tapered titled ridge waveguide section supplying for high optical gain and a straight titled ridge waveguide section to tune optical feedback from the rear facet of the device. The key point of our design is to achieve the wavelength-selective optical feedback to the emission of the QDs’ ground state (GS) and 1st excited state (ES) by tuning the current densities injected in the straight titled section. With GS-dominant optical feedback under proper current-injection of the straight titled region, a high output power of 338 mW and a broad bandwidth of 65 nm is obtained simultaneously by the contribution associated to the QDs’ GS and 1st ES emission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
    [CrossRef]
  2. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
    [CrossRef] [PubMed]
  3. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [CrossRef]
  4. N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
    [CrossRef]
  5. X. Q. Lv, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B 19(1), 018104 (2010).
    [CrossRef]
  6. X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
    [CrossRef] [PubMed]
  7. K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
    [CrossRef] [PubMed]
  8. X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett. 36(6), 1020–1022 (2011).
    [CrossRef] [PubMed]
  9. Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
    [CrossRef]
  10. N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
    [CrossRef]
  11. Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
    [CrossRef]
  12. M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
    [CrossRef]
  13. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
    [CrossRef]
  14. Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express 18(7), 7055–7063 (2010).
    [CrossRef] [PubMed]
  15. S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
    [CrossRef]
  16. H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
    [CrossRef]
  17. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
    [CrossRef]
  18. Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm,” Electron. Lett. 46(4), 295–296 (2010).
    [CrossRef]
  19. Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
    [CrossRef]
  20. H. C. Wong, G. B. Ren, and J. M. Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quantum Electron. 38(4-6), 395–409 (2006).
    [CrossRef]
  21. M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett. 74(11), 1561–1563 (1999).
    [CrossRef]
  22. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
    [CrossRef] [PubMed]
  23. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
    [CrossRef]
  24. G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
    [CrossRef]
  25. M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tenability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14-15), 1129–1134 (2008).
    [CrossRef]
  26. Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
    [CrossRef]
  27. P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
    [CrossRef]
  28. Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
    [CrossRef]
  29. X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
    [CrossRef] [PubMed]
  30. A. J. Williamson, L. W. Wang, and A. Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 62(19), 12963–12977 (2000).
    [CrossRef]
  31. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
    [CrossRef]

2011 (5)

N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
[CrossRef]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[CrossRef]

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

X. Li, A. B. Cohen, T. E. Murphy, and R. Roy, “Scalable parallel physical random number generator based on a superluminescent LED,” Opt. Lett. 36(6), 1020–1022 (2011).
[CrossRef] [PubMed]

2010 (8)

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express 18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
[CrossRef] [PubMed]

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[CrossRef] [PubMed]

X. Q. Lv, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B 19(1), 018104 (2010).
[CrossRef]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm,” Electron. Lett. 46(4), 295–296 (2010).
[CrossRef]

2009 (1)

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

2008 (1)

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tenability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14-15), 1129–1134 (2008).
[CrossRef]

2007 (6)

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

2006 (1)

H. C. Wong, G. B. Ren, and J. M. Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quantum Electron. 38(4-6), 395–409 (2006).
[CrossRef]

2005 (1)

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[CrossRef]

2003 (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

2000 (1)

A. J. Williamson, L. W. Wang, and A. Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 62(19), 12963–12977 (2000).
[CrossRef]

1999 (3)

M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett. 74(11), 1561–1563 (1999).
[CrossRef]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

1998 (1)

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

1996 (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
[CrossRef]

An, Q.

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Bakonyi, Z.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

Bardella, P.

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tenability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14-15), 1129–1134 (2008).
[CrossRef]

Barrios, P. J.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Bonesi, M.

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

Cataluna, M. A.

Chang, R. P. H.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Chang, W. H.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Childs, D.

N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
[CrossRef]

Childs, D. T. D.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

Cohen, A. B.

Dang, G. T.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Devane, G.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Dimas, C. E.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Ding, D.

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Djie, H. S.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Du, G. T.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Fedorova, K. A.

Fiore, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Fujimoto, J. G.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

Gong, Q.

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Götzinger, E.

Gray, A. L.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

Greenwood, P. D. L.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

Groom, K. M.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

Haffouz, S.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Han, I. K.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[CrossRef]

Han, W. H.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Hitzenberger, C. K.

Hogg, R.

N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
[CrossRef]

Hogg, R. A.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm,” Electron. Lett. 46(4), 295–296 (2010).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express 18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

Hopkinson, M.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm,” Electron. Lett. 46(4), 295–296 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express 18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

Hugues, M.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Hwang, J. C. M.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Jiang, Q.

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm,” Electron. Lett. 46(4), 295–296 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express 18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

Jiang, X. Y.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Jin, P.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[CrossRef]

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

X. Q. Lv, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B 19(1), 018104 (2010).
[CrossRef]

X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
[CrossRef] [PubMed]

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[CrossRef]

Kennedy, K.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Kovsh, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

Krestnikov, I.

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[CrossRef] [PubMed]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Krstajic, N.

N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
[CrossRef]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Lapointe, J.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Lee, J. I.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[CrossRef]

Leitgeb, R. A.

Lester, L. F.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

Li, L. H.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Li, X.

Li, X. K.

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[CrossRef]

Li, Y.

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Liu, N.

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[CrossRef]

Liu, Y.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Livshits, D.

Lu, Z.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Lv, X. Q.

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[CrossRef]

X. Q. Lv, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B 19(1), 018104 (2010).
[CrossRef]

X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
[CrossRef] [PubMed]

MacNeil, S.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Markus, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Martinez, A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Matcher, S. J.

N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
[CrossRef]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Mikhrin, S.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

Montrosset, I.

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tenability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14-15), 1129–1134 (2008).
[CrossRef]

Moscho, A. J.

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett. 74(11), 1561–1563 (1999).
[CrossRef]

Murphy, T. E.

Nakata, Y.

M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett. 74(11), 1561–1563 (1999).
[CrossRef]

Newell, T. C.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

Nilsen, T. A.

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Occhi, L.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Onishchukov, G.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

Ooi, B.-S.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Pircher, M.

Poitras, D.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Rafailov, E. U.

Raymond, S.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Ren, G. B.

H. C. Wong, G. B. Ren, and J. M. Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quantum Electron. 38(4-6), 395–409 (2006).
[CrossRef]

Rodermans, M.

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Rorison, J. M.

H. C. Wong, G. B. Ren, and J. M. Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quantum Electron. 38(4-6), 395–409 (2006).
[CrossRef]

Rossetti, M.

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tenability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14-15), 1129–1134 (2008).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Roy, R.

Saiz, T.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Smallwood, R.

N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
[CrossRef]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Smith, L. E.

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

Stair, K. A.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Stevens, B. J.

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

Su, H.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

Sugawara, M.

M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett. 74(11), 1561–1563 (1999).
[CrossRef]

Sun, Z. Z.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Sun, Z.-Z.

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Torzicky, T.

Tünnermann, A.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

Vélez, C.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Walpole, J. N.

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
[CrossRef]

Wang, D.-N.

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Wang, L. W.

A. J. Williamson, L. W. Wang, and A. Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 62(19), 12963–12977 (2000).
[CrossRef]

Wang, W. Y.

Wang, Z. C.

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[CrossRef]

Wang, Z. G.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[CrossRef]

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[CrossRef]

X. Q. Lv, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B 19(1), 018104 (2010).
[CrossRef]

X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
[CrossRef] [PubMed]

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[CrossRef]

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Wei, H.

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Weimert, J.

Williamson, A. J.

A. J. Williamson, L. W. Wang, and A. Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 62(19), 12963–12977 (2000).
[CrossRef]

Wong, H. C.

H. C. Wong, G. B. Ren, and J. M. Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quantum Electron. 38(4-6), 395–409 (2006).
[CrossRef]

Wu, J.

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Wu, S. L.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Xin, Y. C.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Xin, Y.-C.

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Xu, B.

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Yoo, Y. C.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[CrossRef]

Zhang, Z. Y.

Zhao, Y. S.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Zhou, W.

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Zhukov, A.

Zotter, S.

Zunger, A.

A. J. Williamson, L. W. Wang, and A. Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 62(19), 12963–12977 (2000).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett. 74(11), 1561–1563 (1999).
[CrossRef]

Chin. Phys. B (1)

X. Q. Lv, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B 19(1), 018104 (2010).
[CrossRef]

Electron. Lett. (5)

N. Liu, P. Jin, and Z. G. Wang, “InAs/GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41(25), 1400–1402 (2005).
[CrossRef]

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1047 (2007).
[CrossRef]

S. Haffouz, M. Rodermans, P. J. Barrios, J. Lapointe, S. Raymond, Z. Lu, and D. Poitras, “Broadband superluminescent diodes with height-engineered InAs-GaAs quantum dots,” Electron. Lett. 46(16), 1144–1146 (2010).
[CrossRef]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm,” Electron. Lett. 46(4), 295–296 (2010).
[CrossRef]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47(21), 1191–1193 (2011).
[CrossRef]

IEEE J. Quantum Electron. (2)

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

N. Krstajić, L. E. Smith, S. J. Matcher, D. T. D. Childs, M. Bonesi, P. D. L. Greenwood, M. Hugues, K. Kennedy, M. Hopkinson, K. M. Groom, S. MacNeil, R. A. Hogg, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: skin imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 748–754 (2010).
[CrossRef]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, and R. A. Hogg, “Tuning superluminescent diodes characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15(3), 757–763 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y.-C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, and W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10(1), 57–59 (1998).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

IEEE Sens. J. (1)

H. S. Djie, C. E. Dimas, D.-N. Wang, B.-S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Meas. Sci. Technol. (1)

N. Krstajić, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, “Common path Michelson interferometer based on multiple reflections within the sample arm: sensor applications and imaging artifacts,” Meas. Sci. Technol. 22(2), 027002 (2011).
[CrossRef]

Nanoscale Res. Lett. (1)

X. K. Li, P. Jin, Q. An, Z. C. Wang, X. Q. Lv, H. Wei, J. Wu, J. Wu, and Z. G. Wang, “A high-performance quantum dot superluminescent diode with a two-section structure,” Nanoscale Res. Lett. 6(1), 625–629 (2011).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (4)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28(6), 623–645 (1996).
[CrossRef]

Z.-Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

H. C. Wong, G. B. Ren, and J. M. Rorison, “Mode amplification in inhomogeneous QD semiconductor optical amplifiers,” Opt. Quantum Electron. 38(4-6), 395–409 (2006).
[CrossRef]

M. Rossetti, P. Bardella, and I. Montrosset, “Numerical investigation of power tenability in two-section QD superluminescent diodes,” Opt. Quantum Electron. 40(14-15), 1129–1134 (2008).
[CrossRef]

Phys. Rev. B (1)

A. J. Williamson, L. W. Wang, and A. Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 62(19), 12963–12977 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

P-I characteristic measured from the output facet of the S2 section with the S1 section un-pumped. The inset shows schematic design of the SLD device with two-section structure.

Fig. 2
Fig. 2

(a) Normalized EL Emission spectra under different injection-currents of the S2 section. Some spectra are shifted vertically for clarity. (b) Spectral bandwidth and output power as a function of injection-current of the S2 section.

Fig. 3
Fig. 3

Output power versus current of the S2 section under different injection-current of the S1 section.

Fig. 4
Fig. 4

Equal power curves (solid lines) as function of the currents injected in the two sections of the device. The solid circles show the combinations at which the device begins lasing.

Fig. 5
Fig. 5

Normalized EL emission spectra under different I1, for a given I2 of 4 A (a) and 6 A (c) respectively. Some spectra are shifted vertically for clarity. The dependences of spectral bandwidth and output power by injection-currents of the S1 section, for a given I2 of 4 A (b) and 6 A (d) respectively. The inset of Fig. 5(c) is a segment of the high-resolution spectrum at I2 = 6 A and I1 = 100 mA.

Metrics