Abstract

We report a PM all-normal, all-in-fiber passively mode-locked laser operating at 1030 nm. The main pulse shaping mechanism is provided by a tilted chirped-FBG. The laser delivers nanojoule range highly chirped pulses at a repetition rate of about 40 MHz. The FWHM of the optical spectrum is up to 7.8 nm leading to sub-500 fs compressed optical pulses. The influence of the filtering bandwidth and the output coupling ratio has been investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, and F. Sanchez, “90-fs stretched-pulse ytterbium-doped double-clad fiber laser,” Opt. Lett. 28(15), 1305–1307 (2003).
    [CrossRef] [PubMed]
  2. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003).
    [CrossRef] [PubMed]
  3. F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, “131 fs, 33 MHz all-fiber soliton laser at 1.07 microm with a film-type SWNT saturable absorber coated on polyimide,” Opt. Express 18(11), 11223–11229 (2010).
    [CrossRef] [PubMed]
  4. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33(10), 1071–1073 (2008).
    [CrossRef] [PubMed]
  6. M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, “All-fiber ytterbium femtosecond laser without dispersion compensation,” Opt. Express 16(24), 19562–19567 (2008).
    [CrossRef] [PubMed]
  7. K. Ozgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
    [CrossRef] [PubMed]
  8. D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express 19(2), 546–551 (2011).
    [CrossRef] [PubMed]
  9. B. Ortaç, M. Plötner, J. Limpert, and A. Tünnermann, “Self-starting passively mode-locked chirped-pulse fiber laser,” Opt. Express 15(25), 16794–16799 (2007).
    [CrossRef] [PubMed]
  10. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [CrossRef] [PubMed]
  11. X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, and C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express 17(9), 7222–7227 (2009).
    [CrossRef] [PubMed]
  12. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [CrossRef]
  13. S. Zhou, D. G. Ouzounov, and F. W. Wise, “Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz,” Opt. Lett. 31(8), 1041–1043 (2006).
    [CrossRef] [PubMed]
  14. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [CrossRef] [PubMed]
  15. C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19(27), 26742–26751 (2011).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

2009 (1)

2008 (4)

2007 (2)

2006 (2)

2003 (2)

Baumgartl, M.

Brunel, M.

Buckley, J.

Chartier, T.

Cheng, X.

Chong, A.

Gomes, L.

Gong, Y.

Grudinin, A. B.

Hideur, A.

Hori, Y.

Ilday, F. Ö.

Jouhti, T.

Karow, H.

Kieu, K.

Kracht, D.

Lecaplain, C.

Limpert, J.

Lin, C.

Mata, J.

Morgner, U.

Mortag, D.

Nakazawa, M.

Neumann, J.

Okhotnikov, O. G.

Ortaç, B.

Ouzounov, D. G.

Ozgören, K.

Özkul, C.

Plötner, M.

Prochnow, O.

Renninger, W.

Renninger, W. H.

Sanchez, F.

Schreiber, T.

Schultz, M.

Shohda, F.

Shum, P. P.

Tang, M.

Tian, X.

Tsukamoto, J.

Tünnermann, A.

Wandt, D.

Wise, F.

Wise, F. W.

Xiang, N.

Zhou, S.

J. Opt. Soc. Am. B (1)

Opt. Express (8)

M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, “All-fiber ytterbium femtosecond laser without dispersion compensation,” Opt. Express 16(24), 19562–19567 (2008).
[CrossRef] [PubMed]

C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19(27), 26742–26751 (2011).
[CrossRef] [PubMed]

F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, “131 fs, 33 MHz all-fiber soliton laser at 1.07 microm with a film-type SWNT saturable absorber coated on polyimide,” Opt. Express 18(11), 11223–11229 (2010).
[CrossRef] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[CrossRef] [PubMed]

D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express 19(2), 546–551 (2011).
[CrossRef] [PubMed]

B. Ortaç, M. Plötner, J. Limpert, and A. Tünnermann, “Self-starting passively mode-locked chirped-pulse fiber laser,” Opt. Express 15(25), 16794–16799 (2007).
[CrossRef] [PubMed]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[CrossRef] [PubMed]

X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, and C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express 17(9), 7222–7227 (2009).
[CrossRef] [PubMed]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Transmission spectra of the two used FBGs.

Fig. 3
Fig. 3

Pulse train measured with a fast photo-diode (a) and associated RF spectrum (b).

Fig. 4
Fig. 4

Output characteristics. (a) Autocorrelation trace of the output pulse. (b) Optical spectrum of the output pulse.

Fig. 5
Fig. 5

Optical spectrum obtained with filter 1 and filter 2 (CFG50-F1 and CFG50-F2).

Fig. 6
Fig. 6

Setup of the pulse compressor.

Fig. 7
Fig. 7

Experimental autocorrelation trace obtained with the bulk compressor setup (solid curve) and theoretical Fourier limited autocorrelation trace (dotted curve).

Tables (1)

Tables Icon

Table 1 Experimental Results

Metrics