Abstract

We present high-resolution spectroscopy of I2 vapor that is loaded and trapped within the core of a hollow-core photonic crystal fiber (HC-PCF). We compare the observed spectroscopic features to those observed in a conventional iodine cell and show that the saturation characteristics differ significantly. Despite the confined geometry it was still possible to obtain sub-Doppler features with a spectral width of ∼6 MHz with very high contrast. We provide a simple theory which closely reproduces all the key observations of the experiment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]
  2. J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
    [CrossRef]
  3. B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
    [CrossRef]
  4. K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas. 52, 284–287 (2003).
    [CrossRef]
  5. G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
    [CrossRef]
  6. E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
    [CrossRef]
  7. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402(2002).
    [CrossRef] [PubMed]
  8. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [CrossRef] [PubMed]
  9. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35, 2287–2289 (2010).
    [CrossRef] [PubMed]
  10. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  11. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
    [CrossRef] [PubMed]
  12. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rubidium-filled HC-PCF PDMS coated hollow-core PCF,” Opt. Lett. 32, 1323–1325 (2007).
    [CrossRef] [PubMed]
  13. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
    [CrossRef]
  14. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nichol-son, B. R. Washburn, F. Benabid, and Kristan L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
    [CrossRef] [PubMed]
  15. C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High resolution optical spectroscopy in hollow core fibre,” Phys. Rev. A 85, 012518 (2012).
    [CrossRef]
  16. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fibre frequency standard,” Opt. Lett. 36, 4776–4778 (2011).
    [CrossRef] [PubMed]
  17. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2005).
    [CrossRef]
  18. W. Demtroder, Laser Spectroscopy, 3rd ed. (Springer, 2002).
  19. G. Khitrova, P. R. Berman, and M. Sargent, “Theory of pump-probe spectroscopy,” J. Opt. Soc. Am. B 5, 160–170 (1988).
    [CrossRef]
  20. A. Schenzle and R. G. Brewer, “Optical coherent transients: Generalized two-level solutions,” Phys. Rev. A 14, 1756–1765 (1976).
    [CrossRef]
  21. M. A. Banash and W. S. Warren, “State-to-state collisional dynamics by coherent laser pulse phase, shape and frequency modulation,” Laser Chem. 6, 47–60 (1986).
    [CrossRef]
  22. T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys. 86, 5370–5391 (1987).
    [CrossRef]
  23. E. T. Sleva and A. H. Zewail, “Phase and energy-changing collisions in Iodine gas: studies by optical multiple-pulse spectroscopy,” Chem. Phys. Lett. 110, 582–587 (1984).
    [CrossRef]
  24. M. H. Ornstein and V. E. Derr, “Dye-laser scanning spectroscopy and fluorescence-quenching cross sections for the B3Π+o,u, state of iodine,” J. Opt. Soc. Am. 6, 233–240 (1976).
    [CrossRef]
  25. S. V. Kireev and S. L. Shnyrev, “Rotational relaxation of the levels of the B State in 127I and 129I molecular Iodine isotopes excited by 633-nm radiation of a He–Ne Laser,” Laser Phys. 9, 614–625 (1999).
  26. C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A. 14, 236–263 (1976).
    [CrossRef]
  27. G. A. Capelle and H. P. Broida, “Lifetimes and quenching cross sections of I2 (B3ΠOu+),” J. Chem. Phys. 58, 4212–4222 (1973).
    [CrossRef]
  28. F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
    [CrossRef]
  29. G. T. Phillips and G. P. Perram, “Pressure broadening by argon in the hyperfine resolved P(10) and P(70) (17,1) transitions of I2 X1∑(0g+) → B3Π(0u+) using sub-Doppler laser saturation spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 109, 1875–1885 (2008).
    [CrossRef]
  30. B. Hiller and R.K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
    [CrossRef]
  31. H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83(2006) and references therein.
    [CrossRef]
  32. T. Maisello, N. Vulpanovici, and J. W. Nibler, “Fluorescence lifetime and quenching of Iodine vapor,” J. Chem. Educ. 80, 914–917 (2003).
    [CrossRef]
  33. C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994).
    [CrossRef]
  34. D. G. Fletcher and J. C. McDaniel, “Collisional shift and broadening of Iodine spectral lines in Ar near 543nm,” J. Quant. Spectrosc. Radiat. Transfer 54, 837–850, (1995).
    [CrossRef]
  35. M. Comstock, V. V. Lozovoy, and M. Dantusa, “Femtosecond photon echo measurements of electronic coherence relaxation between the X(1∑g+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8,” J. Chem. Phys. 119, 6546–6553 (2003).
    [CrossRef]
  36. J. C. D. Brand and J. Hayward, “Determination of cross-sections for collisional energy transfer in the ground and excited states of I2 by polarization spectroscopy,” Chem. Phys. Lett. 68, 369–373 (1979).
    [CrossRef]

2012

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High resolution optical spectroscopy in hollow core fibre,” Phys. Rev. A 85, 012518 (2012).
[CrossRef]

2011

2010

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35, 2287–2289 (2010).
[CrossRef] [PubMed]

2009

2008

G. T. Phillips and G. P. Perram, “Pressure broadening by argon in the hyperfine resolved P(10) and P(70) (17,1) transitions of I2 X1∑(0g+) → B3Π(0u+) using sub-Doppler laser saturation spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 109, 1875–1885 (2008).
[CrossRef]

2007

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rubidium-filled HC-PCF PDMS coated hollow-core PCF,” Opt. Lett. 32, 1323–1325 (2007).
[CrossRef] [PubMed]

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

2006

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83(2006) and references therein.
[CrossRef]

2005

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2005).
[CrossRef]

2003

K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas. 52, 284–287 (2003).
[CrossRef]

T. Maisello, N. Vulpanovici, and J. W. Nibler, “Fluorescence lifetime and quenching of Iodine vapor,” J. Chem. Educ. 80, 914–917 (2003).
[CrossRef]

M. Comstock, V. V. Lozovoy, and M. Dantusa, “Femtosecond photon echo measurements of electronic coherence relaxation between the X(1∑g+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8,” J. Chem. Phys. 119, 6546–6553 (2003).
[CrossRef]

2002

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
[CrossRef]

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402(2002).
[CrossRef] [PubMed]

2001

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

1999

J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

S. V. Kireev and S. L. Shnyrev, “Rotational relaxation of the levels of the B State in 127I and 129I molecular Iodine isotopes excited by 633-nm radiation of a He–Ne Laser,” Laser Phys. 9, 614–625 (1999).

1995

D. G. Fletcher and J. C. McDaniel, “Collisional shift and broadening of Iodine spectral lines in Ar near 543nm,” J. Quant. Spectrosc. Radiat. Transfer 54, 837–850, (1995).
[CrossRef]

1994

C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994).
[CrossRef]

1990

B. Hiller and R.K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

1988

1987

T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys. 86, 5370–5391 (1987).
[CrossRef]

1986

M. A. Banash and W. S. Warren, “State-to-state collisional dynamics by coherent laser pulse phase, shape and frequency modulation,” Laser Chem. 6, 47–60 (1986).
[CrossRef]

1984

E. T. Sleva and A. H. Zewail, “Phase and energy-changing collisions in Iodine gas: studies by optical multiple-pulse spectroscopy,” Chem. Phys. Lett. 110, 582–587 (1984).
[CrossRef]

1979

J. C. D. Brand and J. Hayward, “Determination of cross-sections for collisional energy transfer in the ground and excited states of I2 by polarization spectroscopy,” Chem. Phys. Lett. 68, 369–373 (1979).
[CrossRef]

1976

M. H. Ornstein and V. E. Derr, “Dye-laser scanning spectroscopy and fluorescence-quenching cross sections for the B3Π+o,u, state of iodine,” J. Opt. Soc. Am. 6, 233–240 (1976).
[CrossRef]

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A. 14, 236–263 (1976).
[CrossRef]

A. Schenzle and R. G. Brewer, “Optical coherent transients: Generalized two-level solutions,” Phys. Rev. A 14, 1756–1765 (1976).
[CrossRef]

1973

G. A. Capelle and H. P. Broida, “Lifetimes and quenching cross sections of I2 (B3ΠOu+),” J. Chem. Phys. 58, 4212–4222 (1973).
[CrossRef]

Acef, O.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Ahola, T.

K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas. 52, 284–287 (2003).
[CrossRef]

Anstie, J. D.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402(2002).
[CrossRef] [PubMed]

Argence, B.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Auger, G.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Banash, M. A.

M. A. Banash and W. S. Warren, “State-to-state collisional dynamics by coherent laser pulse phase, shape and frequency modulation,” Laser Chem. 6, 47–60 (1986).
[CrossRef]

Baynes, F. N.

Benabid, F.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High resolution optical spectroscopy in hollow core fibre,” Phys. Rev. A 85, 012518 (2012).
[CrossRef]

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fibre frequency standard,” Opt. Lett. 36, 4776–4778 (2011).
[CrossRef] [PubMed]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nichol-son, B. R. Washburn, F. Benabid, and Kristan L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef] [PubMed]

P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rubidium-filled HC-PCF PDMS coated hollow-core PCF,” Opt. Lett. 32, 1323–1325 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2005).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402(2002).
[CrossRef] [PubMed]

Berman, P. R.

Bhagwat, A. R.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

Bordé, C.

C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994).
[CrossRef]

Bordé, C. J.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A. 14, 236–263 (1976).
[CrossRef]

Brand, J. C. D.

J. C. D. Brand and J. Hayward, “Determination of cross-sections for collisional energy transfer in the ground and excited states of I2 by polarization spectroscopy,” Chem. Phys. Lett. 68, 369–373 (1979).
[CrossRef]

Brewer, R. G.

A. Schenzle and R. G. Brewer, “Optical coherent transients: Generalized two-level solutions,” Phys. Rev. A 14, 1756–1765 (1976).
[CrossRef]

Broida, H. P.

G. A. Capelle and H. P. Broida, “Lifetimes and quenching cross sections of I2 (B3ΠOu+),” J. Chem. Phys. 58, 4212–4222 (1973).
[CrossRef]

Cao, J. P.

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

Capelle, G. A.

G. A. Capelle and H. P. Broida, “Lifetimes and quenching cross sections of I2 (B3ΠOu+),” J. Chem. Phys. 58, 4212–4222 (1973).
[CrossRef]

Chardonnet, C.

C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994).
[CrossRef]

Charton, G.

C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994).
[CrossRef]

Comstock, M.

M. Comstock, V. V. Lozovoy, and M. Dantusa, “Femtosecond photon echo measurements of electronic coherence relaxation between the X(1∑g+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8,” J. Chem. Phys. 119, 6546–6553 (2003).
[CrossRef]

Corwin, Kristan L.

Couny, F.

Dantusa, M.

M. Comstock, V. V. Lozovoy, and M. Dantusa, “Femtosecond photon echo measurements of electronic coherence relaxation between the X(1∑g+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8,” J. Chem. Phys. 119, 6546–6553 (2003).
[CrossRef]

de Vismes, E.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Demtroder, W.

W. Demtroder, Laser Spectroscopy, 3rd ed. (Springer, 2002).

Deng, Y. K.

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

Derr, V. E.

M. H. Ornstein and V. E. Derr, “Dye-laser scanning spectroscopy and fluorescence-quenching cross sections for the B3Π+o,u, state of iodine,” J. Opt. Soc. Am. 6, 233–240 (1976).
[CrossRef]

Ducos, F.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Fang, H.-M.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83(2006) and references therein.
[CrossRef]

Fayer, M. D.

T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys. 86, 5370–5391 (1987).
[CrossRef]

Fletcher, D. G.

D. G. Fletcher and J. C. McDaniel, “Collisional shift and broadening of Iodine spectral lines in Ar near 543nm,” J. Quant. Spectrosc. Radiat. Transfer 54, 837–850, (1995).
[CrossRef]

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

Gaeta, A. L.

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35, 2287–2289 (2010).
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Gao, C. Q.

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Guernet, F.

C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994).
[CrossRef]

Hald, J.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

Hall, J. L.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A. 14, 236–263 (1976).
[CrossRef]

Halloin, H.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Hanson, R.K.

B. Hiller and R.K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

Hayward, J.

J. C. D. Brand and J. Hayward, “Determination of cross-sections for collisional energy transfer in the ground and excited states of I2 by polarization spectroscopy,” Chem. Phys. Lett. 68, 369–373 (1979).
[CrossRef]

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

Henningsen, J.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

Hiller, B.

B. Hiller and R.K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

Hong, F.-L.

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
[CrossRef]

Hummer, D. G.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A. 14, 236–263 (1976).
[CrossRef]

Ishikawa, J.

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
[CrossRef]

Jeannin, O.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Jones, A. M.

Khitrova, G.

Kireev, S. V.

S. V. Kireev and S. L. Shnyrev, “Rotational relaxation of the levels of the B State in 127I and 129I molecular Iodine isotopes excited by 633-nm radiation of a He–Ne Laser,” Laser Phys. 9, 614–625 (1999).

Knabe, K.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402(2002).
[CrossRef] [PubMed]

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Kunasz, C. V.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A. 14, 236–263 (1976).
[CrossRef]

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

Lassila, A.

K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas. 52, 284–287 (2003).
[CrossRef]

Li, C. Y.

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

Li, Y.

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

Light, P. S.

Lim, J.

Londero, P.

Long-Sheng, M.

J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Lozovoy, V. V.

M. Comstock, V. V. Lozovoy, and M. Dantusa, “Femtosecond photon echo measurements of electronic coherence relaxation between the X(1∑g+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8,” J. Chem. Phys. 119, 6546–6553 (2003).
[CrossRef]

Luiten, A. N.

Lurie, A.

Ma, L. S.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

Maisello, T.

T. Maisello, N. Vulpanovici, and J. W. Nibler, “Fluorescence lifetime and quenching of Iodine vapor,” J. Chem. Educ. 80, 914–917 (2003).
[CrossRef]

Maric, M.

Matsumoto, H.

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
[CrossRef]

McDaniel, J. C.

D. G. Fletcher and J. C. McDaniel, “Collisional shift and broadening of Iodine spectral lines in Ar near 543nm,” J. Quant. Spectrosc. Radiat. Transfer 54, 837–850, (1995).
[CrossRef]

Merimaa, M.

K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas. 52, 284–287 (2003).
[CrossRef]

Nibler, J. W.

T. Maisello, N. Vulpanovici, and J. W. Nibler, “Fluorescence lifetime and quenching of Iodine vapor,” J. Chem. Educ. 80, 914–917 (2003).
[CrossRef]

Nichol-son, J. W.

Nyholm, K.

K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas. 52, 284–287 (2003).
[CrossRef]

Onae, A.

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
[CrossRef]

Ornstein, M. H.

M. H. Ornstein and V. E. Derr, “Dye-laser scanning spectroscopy and fluorescence-quenching cross sections for the B3Π+o,u, state of iodine,” J. Opt. Soc. Am. 6, 233–240 (1976).
[CrossRef]

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Perram, G. P.

G. T. Phillips and G. P. Perram, “Pressure broadening by argon in the hyperfine resolved P(10) and P(70) (17,1) transitions of I2 X1∑(0g+) → B3Π(0u+) using sub-Doppler laser saturation spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 109, 1875–1885 (2008).
[CrossRef]

Perrella, C.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High resolution optical spectroscopy in hollow core fibre,” Phys. Rev. A 85, 012518 (2012).
[CrossRef]

Petersen, J. C.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

Phillips, G. T.

G. T. Phillips and G. P. Perram, “Pressure broadening by argon in the hyperfine resolved P(10) and P(70) (17,1) transitions of I2 X1∑(0g+) → B3Π(0u+) using sub-Doppler laser saturation spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 109, 1875–1885 (2008).
[CrossRef]

Picard, S.

J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

Plagnol, E.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Prat, P.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Robertsson, L.

J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Rose, T. S.

T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys. 86, 5370–5391 (1987).
[CrossRef]

Rovera, G. D.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Russell, P. St. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402(2002).
[CrossRef] [PubMed]

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Sargent, M.

Schenzle, A.

A. Schenzle and R. G. Brewer, “Optical coherent transients: Generalized two-level solutions,” Phys. Rev. A 14, 1756–1765 (1976).
[CrossRef]

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Shnyrev, S. L.

S. V. Kireev and S. L. Shnyrev, “Rotational relaxation of the levels of the B State in 127I and 129I molecular Iodine isotopes excited by 633-nm radiation of a He–Ne Laser,” Laser Phys. 9, 614–625 (1999).

Shy, J.-T.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83(2006) and references therein.
[CrossRef]

Slepkov, A. D.

Sleva, E. T.

E. T. Sleva and A. H. Zewail, “Phase and energy-changing collisions in Iodine gas: studies by optical multiple-pulse spectroscopy,” Chem. Phys. Lett. 110, 582–587 (1984).
[CrossRef]

Stace, T. M.

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High resolution optical spectroscopy in hollow core fibre,” Phys. Rev. A 85, 012518 (2012).
[CrossRef]

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fibre frequency standard,” Opt. Lett. 36, 4776–4778 (2011).
[CrossRef] [PubMed]

Thapa, R.

Tillman, K. A.

Turazza, O.

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Venkataraman, V.

Vulpanovici, N.

T. Maisello, N. Vulpanovici, and J. W. Nibler, “Fluorescence lifetime and quenching of Iodine vapor,” J. Chem. Educ. 80, 914–917 (2003).
[CrossRef]

Wackerle, G.

T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys. 86, 5370–5391 (1987).
[CrossRef]

Wallerand, J.-P.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Wang, S. C.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83(2006) and references therein.
[CrossRef]

Warren, W. S.

M. A. Banash and W. S. Warren, “State-to-state collisional dynamics by coherent laser pulse phase, shape and frequency modulation,” Laser Chem. 6, 47–60 (1986).
[CrossRef]

Washburn, B. R.

Wheeler, N.

Wilson, W. L.

T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys. 86, 5370–5391 (1987).
[CrossRef]

Wu, S.

Ye, J.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Zang, E. J.

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

Zewail, A. H.

E. T. Sleva and A. H. Zewail, “Phase and energy-changing collisions in Iodine gas: studies by optical multiple-pulse spectroscopy,” Chem. Phys. Lett. 110, 582–587 (1984).
[CrossRef]

Zhang, Y.

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
[CrossRef]

Zondy, J.-J.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Appl. Phys. B

C. Chardonnet, F. Guernet, G. Charton, and C. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994).
[CrossRef]

Chem. Phys. Lett.

E. T. Sleva and A. H. Zewail, “Phase and energy-changing collisions in Iodine gas: studies by optical multiple-pulse spectroscopy,” Chem. Phys. Lett. 110, 582–587 (1984).
[CrossRef]

J. C. D. Brand and J. Hayward, “Determination of cross-sections for collisional energy transfer in the ground and excited states of I2 by polarization spectroscopy,” Chem. Phys. Lett. 68, 369–373 (1979).
[CrossRef]

Exp. Fluids

B. Hiller and R.K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Ye, L. Robertsson, S. Picard, M. Long-Sheng, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

K. Nyholm, M. Merimaa, T. Ahola, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. Instrum. Meas. 52, 284–287 (2003).
[CrossRef]

E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrum. Meas. 56, 673–676 (2007).
[CrossRef]

J. Chem. Educ.

T. Maisello, N. Vulpanovici, and J. W. Nibler, “Fluorescence lifetime and quenching of Iodine vapor,” J. Chem. Educ. 80, 914–917 (2003).
[CrossRef]

J. Chem. Phys.

M. Comstock, V. V. Lozovoy, and M. Dantusa, “Femtosecond photon echo measurements of electronic coherence relaxation between the X(1∑g+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8,” J. Chem. Phys. 119, 6546–6553 (2003).
[CrossRef]

G. A. Capelle and H. P. Broida, “Lifetimes and quenching cross sections of I2 (B3ΠOu+),” J. Chem. Phys. 58, 4212–4222 (1973).
[CrossRef]

T. S. Rose, W. L. Wilson, G. Wackerle, and M. D. Fayer, “Gas phase dynamics and spectroscopy probed with picosecond transient grating experiments,” J. Chem. Phys. 86, 5370–5391 (1987).
[CrossRef]

J. Opt. Soc. Am.

M. H. Ornstein and V. E. Derr, “Dye-laser scanning spectroscopy and fluorescence-quenching cross sections for the B3Π+o,u, state of iodine,” J. Opt. Soc. Am. 6, 233–240 (1976).
[CrossRef]

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transf.

G. T. Phillips and G. P. Perram, “Pressure broadening by argon in the hyperfine resolved P(10) and P(70) (17,1) transitions of I2 X1∑(0g+) → B3Π(0u+) using sub-Doppler laser saturation spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 109, 1875–1885 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

D. G. Fletcher and J. C. McDaniel, “Collisional shift and broadening of Iodine spectral lines in Ar near 543nm,” J. Quant. Spectrosc. Radiat. Transfer 54, 837–850, (1995).
[CrossRef]

Laser Chem.

M. A. Banash and W. S. Warren, “State-to-state collisional dynamics by coherent laser pulse phase, shape and frequency modulation,” Laser Chem. 6, 47–60 (1986).
[CrossRef]

Laser Phys.

S. V. Kireev and S. L. Shnyrev, “Rotational relaxation of the levels of the B State in 127I and 129I molecular Iodine isotopes excited by 633-nm radiation of a He–Ne Laser,” Laser Phys. 9, 614–625 (1999).

Meas. Sci. Technol.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, and P. St. J. Russell, “Absolute frequency meaurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

Opt. Commun.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83(2006) and references therein.
[CrossRef]

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of 127I2 near 532 nm,” Opt. Commun. 212, 89–95 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High resolution optical spectroscopy in hollow core fibre,” Phys. Rev. A 85, 012518 (2012).
[CrossRef]

A. Schenzle and R. G. Brewer, “Optical coherent transients: Generalized two-level solutions,” Phys. Rev. A 14, 1756–1765 (1976).
[CrossRef]

Phys. Rev. A.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A. 14, 236–263 (1976).
[CrossRef]

Phys. Rev. D

B. Argence, H. Halloin, O. Jeannin, P. Prat, O. Turazza, E. de Vismes, G. Auger, and E. Plagnol, “Molecular laser stabilization at low frequencies for the LISA mission,” Phys. Rev. D 81, 082002 (2010).
[CrossRef]

Phys. Rev. Lett.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402(2002).
[CrossRef] [PubMed]

Other

W. Demtroder, Laser Spectroscopy, 3rd ed. (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup with counter-propagating pump (green) and probe (blue) beams. MO - microscope objective, AOM - acoustic optical modulator, PD - photodiode, HWP - half-wave plate, V - vacuum valves, with the counter-propagating beams separated for ease of visualization. The inset shows a micrograph of the fiber used in this experiment. The short and long axis diameters of the core are 23 and 27 μm respectively.

Fig. 2
Fig. 2

Schematic plot of the “open” two-level model of iodine molecules used in the theory presented here. Counter-propagating laser light of power Ip,s drives stimulated transitions between the ground, g, and excited, e, states. Collisions with molecules in the ground and excited states (at rates cg and ce respectively) exchange molecules between the laser-coupled and uncoupled states.

Fig. 3
Fig. 3

The P(142)37-0 Doppler-broadened (upper panel) and Doppler-free spectrum (lower panel) recorded in the cell (lowest traces- blue), in the fiber (middle traces -black) and calculated using the theory presented in Sect. 3 (highest traces - red). For the experiment the pump intensity was 41 kWm−2 and 25 kWm−2 for the fiber and cell respectively with probe intensities less than 20% of that of the pump. For the theory, we have used w0 = 6 MHz; ρ0σ = 0.02; Ip/Isat = 1 (to nearly match the cell conditions) and summed the response of all 15 hyperfine features using the known frequency spacings in Ref. [28]. We have normalized the frequency axis to the centre of mass of the transition at 563.281 THz [28]. The a1 hyperfine component is the lowest frequency component in the hyperfine spectrum near −424 MHz and is 28% and 8% of the height of the Doppler absorption of the cell and fibre respectively. For clarity the lower traces have been offset by 1 unit, while the upper traces are offset by 0.1 units.

Fig. 4
Fig. 4

Linear Absorption of the P(142) 37-0 line as a function of probe intensity. Black markers show measurements from fiber measurement while the blue markers show measurements from cell. Solid curves in both cases are fits following the form of Eq. 3. It is evident that the number density of the cell and fiber differ substantial as do the saturation intensities.

Fig. 5
Fig. 5

The dependence of the bandwidth (FWHM) of the a1 component of the P(142) 37-0 iodine transition on pump power. We examine a 10cm long traditional glass iodine cell (blue markers), and the iodine loaded HC-PCF (black markers). Solid curves in the two cases are fits to the data following the form of Eq. 5.

Fig. 6
Fig. 6

The contrast of the a1 component of the P142(37-0) line as a function of pump intensity. The blue triangles show data from the cell, while the black squares show data from the fiber experiment. The probe intensity was maintained at ∼ 20% of the pump in both cases. The solid lines show fits of the form Ckeff where C comes from Eq. 4. We have held Isat constant at the value derived from Fig. 5 and the only free parameter is keff.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

e ˙ ( t ) = ( g e ) I p σ 1 + δ p 2 ( w 0 / 2 ) 2 + ( g e ) I s σ 1 + δ s 2 ( w 0 / 2 ) 2 e ( c e + γ )
g ˙ ( t ) = ( ρ [ δ v ] g ) c g ( g e ) I p σ 1 + δ p 2 ( w 0 / 2 ) 2 ( g e ) I s σ 1 + δ s 2 ( w 0 / 2 ) 2
α D = ρ 0 σ ( 1 + I s I sat ) 1 / 2
C = 1 1 + I p / ( 2 I sat ) ( 1 + I p / I sat ) 3 / 2
w = w 0 1 + I p / ( 2 I sat )

Metrics