Abstract

Despite the wide application of liquid crystals (LCs) in the visible frequency range, their properties in the terahertz range have not yet been extensively investigated. In this paper we have investigated the terahertz properties of LCs E7, BL037, RDP-94990 and RDP-97304 using terahertz time-domain-spectroscopy. We find that RDP-94990 has the largest birefringence and smallest absorption in the terahertz range compared to E7 and BL037. We highlight the importance of investigating all parameters, not just the birefringence, when designing fast, efficient and transmissive terahertz LC devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
    [CrossRef]
  2. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
    [CrossRef] [PubMed]
  3. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10(3), 033012 (2008).
    [CrossRef]
  4. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
    [CrossRef] [PubMed]
  5. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31(17), 2592–2594 (2006).
    [CrossRef] [PubMed]
  6. E. M. Pogson, R. A. Lewis, M. Koeberle, and R. Jacoby, “Terahertz time-domain spectroscopy of nematic liquid crystals,” Proc. SPIE 7728, 77281Y (2010).
    [CrossRef]
  7. E. Jakeman and E. P. Raynes, “Electro-optic response times in liquid crystals,” Phys. Lett. A 39(1), 69–70 (1972).
    [CrossRef]
  8. M. Schadt, “Liquid Crystal Materials and Liquid Crystal Displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
    [CrossRef]
  9. X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
    [CrossRef]
  10. C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B 27(9), 1866–1873 (2010).
    [CrossRef]
  11. N. Vieweg, M. K. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun. 284(7), 1887–1889 (2011).
    [CrossRef]
  12. S. V. Pasechnik, V. G. Chigrinov, and D. V. Shmeliova, Liquid Crystals, Viscous and Elastic Properties (Wiley-VCH, 2009), 424 pp.
  13. G. J. Evans, J. K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq. 32(2), 149–160 (1986).
    [CrossRef]
  14. V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
    [CrossRef]
  15. Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
    [CrossRef]
  16. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves 33(3), 327–332 (2012).
    [CrossRef]

2012

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves 33(3), 327–332 (2012).
[CrossRef]

2011

N. Vieweg, M. K. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun. 284(7), 1887–1889 (2011).
[CrossRef]

2010

2009

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
[CrossRef]

2008

V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
[CrossRef]

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10(3), 033012 (2008).
[CrossRef]

2007

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
[CrossRef]

2006

2004

1997

M. Schadt, “Liquid Crystal Materials and Liquid Crystal Displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[CrossRef]

1986

G. J. Evans, J. K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq. 32(2), 149–160 (1986).
[CrossRef]

1972

E. Jakeman and E. P. Raynes, “Electro-optic response times in liquid crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[CrossRef]

Abbate, G.

V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
[CrossRef]

Al-Naib, I.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves 33(3), 327–332 (2012).
[CrossRef]

Born, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves 33(3), 327–332 (2012).
[CrossRef]

Chen, C.-Y.

Diaz, A.

Dyomin, A. A.

V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
[CrossRef]

Evans, G. J.

G. J. Evans, J. K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq. 32(2), 149–160 (1986).
[CrossRef]

Evans, M. W.

G. J. Evans, J. K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq. 32(2), 149–160 (1986).
[CrossRef]

Hendry, E.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10(3), 033012 (2008).
[CrossRef]

Hsieh, C.-F.

Isaac, T. H.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10(3), 033012 (2008).
[CrossRef]

Jacoby, R.

E. M. Pogson, R. A. Lewis, M. Koeberle, and R. Jacoby, “Terahertz time-domain spectroscopy of nematic liquid crystals,” Proc. SPIE 7728, 77281Y (2010).
[CrossRef]

Jakeman, E.

E. Jakeman and E. P. Raynes, “Electro-optic response times in liquid crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[CrossRef]

Jewell, S. A.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10(3), 033012 (2008).
[CrossRef]

Khoo, I. C.

Koch, M.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves 33(3), 327–332 (2012).
[CrossRef]

N. Vieweg, M. K. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun. 284(7), 1887–1889 (2011).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

Koeberle, M.

E. M. Pogson, R. A. Lewis, M. Koeberle, and R. Jacoby, “Terahertz time-domain spectroscopy of nematic liquid crystals,” Proc. SPIE 7728, 77281Y (2010).
[CrossRef]

Kopschinski, O.

Lewis, R. A.

E. M. Pogson, R. A. Lewis, M. Koeberle, and R. Jacoby, “Terahertz time-domain spectroscopy of nematic liquid crystals,” Proc. SPIE 7728, 77281Y (2010).
[CrossRef]

Li, X.

Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
[CrossRef]

Liang, X.

Lin, C. J.

Lin, Y.-F.

Lu, R.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
[CrossRef]

Moscicki, J. K.

G. J. Evans, J. K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq. 32(2), 149–160 (1986).
[CrossRef]

Nie, X.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
[CrossRef]

Pan, C. L.

Pan, C.-L.

Pan, R. P.

Pan, R.-P.

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Pogson, E. M.

E. M. Pogson, R. A. Lewis, M. Koeberle, and R. Jacoby, “Terahertz time-domain spectroscopy of nematic liquid crystals,” Proc. SPIE 7728, 77281Y (2010).
[CrossRef]

Que, C. T.

Ran, Z.

Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
[CrossRef]

Raynes, E. P.

E. Jakeman and E. P. Raynes, “Electro-optic response times in liquid crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[CrossRef]

Sambles, J. R.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10(3), 033012 (2008).
[CrossRef]

Schadt, M.

M. Schadt, “Liquid Crystal Materials and Liquid Crystal Displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[CrossRef]

Shakfa, M. K.

N. Vieweg, M. K. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun. 284(7), 1887–1889 (2011).
[CrossRef]

Sukhoivanov, I. A.

V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
[CrossRef]

Tani, M.

Tkachenko, G. V.

V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
[CrossRef]

Tkachenko, V.

V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
[CrossRef]

Vieweg, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves 33(3), 327–332 (2012).
[CrossRef]

N. Vieweg, M. K. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun. 284(7), 1887–1889 (2011).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[CrossRef] [PubMed]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Weiner, B.

Werner, D. H.

Wilk, R.

Wu, S.-T.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
[CrossRef]

Wu, T. X.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
[CrossRef]

Xianyu, H.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
[CrossRef]

Yamamoto, K.

Yang, C. S.

Yong-Gang, L.

Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
[CrossRef]

Zeng-Hui, P.

Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
[CrossRef]

Zhi-Gang, Z.

Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
[CrossRef]

Annu. Rev. Mater. Sci.

M. Schadt, “Liquid Crystal Materials and Liquid Crystal Displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[CrossRef]

Chin. Phys. B

Z. Ran, P. Zeng-Hui, L. Yong-Gang, Z. Zhi-Gang, and X. Li, “Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study,” Chin. Phys. B 18(10), 4380–4385 (2009).
[CrossRef]

J. Disp. Technol.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S.-T. Wu, “Pretilt Angle Effects on Liquid Crystal Response Time,” J. Disp. Technol. 3(3), 280–283 (2007).
[CrossRef]

J. Infrared Milli. Terahz. Waves

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves 33(3), 327–332 (2012).
[CrossRef]

J. Mol. Liq.

G. J. Evans, J. K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq. 32(2), 149–160 (1986).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

V. Tkachenko, A. A. Dyomin, G. V. Tkachenko, G. Abbate, and I. A. Sukhoivanov, “Electrical reorientation of liquid crystal molecules inside cylindrical pores for photonic device applications,” J. Opt. A, Pure Appl. Opt. 10(5), 055301 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

New J. Phys.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10(3), 033012 (2008).
[CrossRef]

Opt. Commun.

N. Vieweg, M. K. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun. 284(7), 1887–1889 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

E. Jakeman and E. P. Raynes, “Electro-optic response times in liquid crystals,” Phys. Lett. A 39(1), 69–70 (1972).
[CrossRef]

Proc. SPIE

E. M. Pogson, R. A. Lewis, M. Koeberle, and R. Jacoby, “Terahertz time-domain spectroscopy of nematic liquid crystals,” Proc. SPIE 7728, 77281Y (2010).
[CrossRef]

Other

S. V. Pasechnik, V. G. Chigrinov, and D. V. Shmeliova, Liquid Crystals, Viscous and Elastic Properties (Wiley-VCH, 2009), 424 pp.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractive indices (a) and absorption coefficients (b) measured at 294 K: the ordinary and extraordinary axis data are represented with dot-dashed and solid lines respectively.

Fig. 2
Fig. 2

Birefringence values between 0.2 and 2.0 THz for the four sets of liquid crystals.

Fig. 3
Fig. 3

τon as a function of (a) phase shifter frequency (using a driving voltage of 1000 V) and (b) driving voltage (using a frequency of 1 THz).

Fig. 4
Fig. 4

Transmittance of an LC cell made of the four LC mixtures producing a π phase change (a) extraordinary axis and (b) ordinary axis.

Tables (3)

Tables Icon

Table 1 Comparison of the terahertz properties of E7, BL037, RDP-97304 and RDP-94990 from the present work (in bold) and previous studies of E7 and BL037*

Tables Icon

Table 2 LC material parameters and τon at 1 THz for a driving voltage of 1000 V (accuracy:+/− 5%)

Tables Icon

Table 3 Table of merit: matching LC materials to applications (ratings: best + + + + + ; worst + )

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ=2πΔnd/λ
τ off = γ 1 d 2 / K x π 2
τ on = τ off /| (V/ V th ) 2 1 |
V th = ( K x / ε o Δε) 1/2
K x ( K 11 + K 33 )/2

Metrics