Abstract

We investigated phytoplankton absorption properties of Lake Taihu, in the spring and summer of 2005 and 2006, and for 17 days studied laboratory cultures of Scenedesmus obliquus (chlorophyta) and Microcystis aeruginosa (cyanophyta) to determine the effect of phytoplankton community composition and cell size on the absorption properties. There were significant seasonal differences in phytoplankton community composition and absorption coefficients. In spring, the phytoplankton community was dominated by chlorophyta with large cells, whereas in summer was dominated by cyanophyta with small cells. Phytoplankton absorption coefficients increased significantly from spring to summer, with the increase in chlorophyll a (Chla) concentration. In addition, Chla-specific absorption coefficients increased with the phytoplankton community succession from chlorophyta to cyanophyta. In culture, the cells density of S. obliquus was generally lower than that of M. aeruginosa, and Chla concentrations of S. obliquus were significantly higher than those of M. aeruginosa. Correspondingly, the Chla-specific absorption coefficients of S. obliquus were significantly lower than those of M. aeruginosa. Significant exponential correlations were found between absorption and Chla-specific absorption coefficients and Chla concentration for S. obliquus and M. aeruginosa. In addition, we developed a model to predict absorption and Chla-specific absorption coefficients using Chla concentration and cell size when data from two species was grouped together. Field and experimental results both showed that the Chla-specific absorption coefficients of cyanophyta were significantly higher than those of chlorophyta. The variability in specific absorption can attributed to phytoplankton community composition, cell size and pigment composition. As phytoplankton community composition changed significantly with season in the lake, and as variation in the cell sizes and accessory pigments of the phytoplankton community influenced the Chla-specific absorption coefficient, these factors may be considered explicitly in future improvements to bio-optical algorithms to more accurately estimate Chla concentration, primary production and phytoplankton community composition.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University Press, 1994).
  2. Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
    [CrossRef]
  3. J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24(3), GB3016 (2010), doi:.
    [CrossRef]
  4. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
    [CrossRef] [PubMed]
  5. J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
    [CrossRef]
  6. H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010).
    [CrossRef] [PubMed]
  7. D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
    [CrossRef]
  8. T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24(9), 859–874 (2002).
    [CrossRef]
  9. A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
    [CrossRef]
  10. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
    [CrossRef]
  11. S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32(2), 403–415 (1987).
    [CrossRef]
  12. E. Millán-Núñez and R. Millán-Núñez, “Specific absorption coefficient and phytoplankton community structure in the Southern Region of the California Current during January 2002,” J. Oceanogr. 66(5), 719–730 (2010).
    [CrossRef]
  13. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C1), C11010 (2004).
    [CrossRef]
  14. J. Toepel, U. Langner, and C. Wilhelm, “Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level,” J. Phycol. 41(6), 1099–1109 (2005).
    [CrossRef]
  15. C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619(1), 27–37 (2009).
    [CrossRef]
  16. Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
    [CrossRef]
  17. Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res. 25(4), 445–453 (2003).
    [CrossRef]
  18. W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr. 31(3), 478–490 (1986).
    [CrossRef]
  19. Z. Ke, P. Xie, and L. Guo, “Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China),” Hydrobiologia 607(1), 41–49 (2008).
    [CrossRef]
  20. C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
    [CrossRef]
  21. H. J. Hu, R. Y. Li, Y. X. Wei, H. Zhu, J. Chen, and Z. Shi, Freshwater algae in China (Shanghai Science and Technology Press, Shanghai (in Chinese), 1980).
  22. B. G. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).
    [CrossRef]
  23. H. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).
    [CrossRef]
  24. I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband,” Limnol. Oceanogr. Methods 1(1), 1–9 (2003).
  25. J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
    [CrossRef]
  26. R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev. 35(2), 171–205 (1971).
    [PubMed]
  27. S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24(8), 757–774 (2002).
    [CrossRef]
  28. R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin,” Process Biochem. 34(8), 795–801 (1999).
    [CrossRef]
  29. A. Bennett and L. Bogorad, “Complementary chromatic adaptation in a filamentous blue-green alga,” J. Cell Biol. 58(2), 419–435 (1973).
    [CrossRef] [PubMed]
  30. K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
    [CrossRef]
  31. A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
    [CrossRef]
  32. Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
    [CrossRef]
  33. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
    [CrossRef]
  34. A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
    [CrossRef]
  35. L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
    [CrossRef]
  36. T. L. Richardson and G. A. Jackson, “Small phytoplankton and carbon export from the surface ocean,” Science 315(5813), 838–840 (2007).
    [CrossRef] [PubMed]
  37. A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
    [CrossRef]
  38. C. B. Mouw, J. A. Yoder, and S. C. Doney, “Impact of phytoplankton community size on a linked global ocean optical and ecosystem model,” J. Mar. Syst. 89(1), 61–75 (2012).
    [CrossRef]
  39. A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4(1), 237–253 (2006).
    [CrossRef]
  40. A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
    [CrossRef]
  41. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
    [CrossRef]
  42. C. B. Mouw and J. A. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res. 115(C12), C12018 (2010), doi: .
    [CrossRef]
  43. X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
    [CrossRef]
  44. P. A. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
    [CrossRef]
  45. G. Johnsen, B. B. Prézelin, and R. V. M. Jovine, “Fluorescence excitation spectra and light utilization in two red tide dinoflagellates,” Limnol. Oceanogr. 42(5, Part 2), 1166–1177 (1997).
    [CrossRef]
  46. T. A. Moisan and B. G. Mitchell, “Photophysiological acclimation of Phaeocystis Antarctica Karsten under light limitation,” Limnol. Oceanogr. 44(2), 247–258 (1999).
    [CrossRef]
  47. S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
    [CrossRef]
  48. T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci. 67(1–2), 303–312 (2006).
    [CrossRef]
  49. H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
    [CrossRef]
  50. S. Chee Yew Leong and S. Taguchi, “Optical characteristics of the harmful dinoflagellate Alexandrium tamarense in response to different nitrogen sources,” Harmful Algae 4(2), 211–219 (2005).
    [CrossRef]
  51. Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).
  52. P. A. Stæhr, P. Henriksen, and S. Markager, “Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability,” Mar. Ecol. Prog. Ser. 238, 47–59 (2002).
    [CrossRef]
  53. Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ. 89(3), 361–368 (2004).
    [CrossRef]
  54. P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
    [CrossRef]

2012 (2)

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

C. B. Mouw, J. A. Yoder, and S. C. Doney, “Impact of phytoplankton community size on a linked global ocean optical and ecosystem model,” J. Mar. Syst. 89(1), 61–75 (2012).
[CrossRef]

2011 (3)

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[CrossRef]

A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
[CrossRef]

X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
[CrossRef]

2010 (9)

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[CrossRef]

C. B. Mouw and J. A. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res. 115(C12), C12018 (2010), doi: .
[CrossRef]

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[CrossRef]

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24(3), GB3016 (2010), doi:.
[CrossRef]

H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010).
[CrossRef] [PubMed]

E. Millán-Núñez and R. Millán-Núñez, “Specific absorption coefficient and phytoplankton community structure in the Southern Region of the California Current during January 2002,” J. Oceanogr. 66(5), 719–730 (2010).
[CrossRef]

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

2009 (5)

C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619(1), 27–37 (2009).
[CrossRef]

A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
[CrossRef]

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

2008 (2)

J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
[CrossRef]

Z. Ke, P. Xie, and L. Guo, “Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China),” Hydrobiologia 607(1), 41–49 (2008).
[CrossRef]

2007 (1)

T. L. Richardson and G. A. Jackson, “Small phytoplankton and carbon export from the surface ocean,” Science 315(5813), 838–840 (2007).
[CrossRef] [PubMed]

2006 (2)

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4(1), 237–253 (2006).
[CrossRef]

T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci. 67(1–2), 303–312 (2006).
[CrossRef]

2005 (4)

S. Chee Yew Leong and S. Taguchi, “Optical characteristics of the harmful dinoflagellate Alexandrium tamarense in response to different nitrogen sources,” Harmful Algae 4(2), 211–219 (2005).
[CrossRef]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[CrossRef]

J. Toepel, U. Langner, and C. Wilhelm, “Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level,” J. Phycol. 41(6), 1099–1109 (2005).
[CrossRef]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C1), C11010 (2004).
[CrossRef]

Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ. 89(3), 361–368 (2004).
[CrossRef]

P. A. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[CrossRef]

2003 (4)

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res. 25(4), 445–453 (2003).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband,” Limnol. Oceanogr. Methods 1(1), 1–9 (2003).

2002 (5)

A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[CrossRef]

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24(8), 757–774 (2002).
[CrossRef]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24(9), 859–874 (2002).
[CrossRef]

P. A. Stæhr, P. Henriksen, and S. Markager, “Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability,” Mar. Ecol. Prog. Ser. 238, 47–59 (2002).
[CrossRef]

1999 (3)

T. A. Moisan and B. G. Mitchell, “Photophysiological acclimation of Phaeocystis Antarctica Karsten under light limitation,” Limnol. Oceanogr. 44(2), 247–258 (1999).
[CrossRef]

R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin,” Process Biochem. 34(8), 795–801 (1999).
[CrossRef]

H. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).
[CrossRef]

1997 (1)

G. Johnsen, B. B. Prézelin, and R. V. M. Jovine, “Fluorescence excitation spectra and light utilization in two red tide dinoflagellates,” Limnol. Oceanogr. 42(5, Part 2), 1166–1177 (1997).
[CrossRef]

1993 (1)

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

1990 (1)

B. G. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).
[CrossRef]

1987 (1)

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32(2), 403–415 (1987).
[CrossRef]

1986 (1)

W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr. 31(3), 478–490 (1986).
[CrossRef]

1981 (1)

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

1973 (1)

A. Bennett and L. Bogorad, “Complementary chromatic adaptation in a filamentous blue-green alga,” J. Cell Biol. 58(2), 419–435 (1973).
[CrossRef] [PubMed]

1971 (1)

R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev. 35(2), 171–205 (1971).
[PubMed]

Babin, M.

A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
[CrossRef]

J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

Bennett, A.

A. Bennett and L. Bogorad, “Complementary chromatic adaptation in a filamentous blue-green alga,” J. Cell Biol. 58(2), 419–435 (1973).
[CrossRef] [PubMed]

Blouin, F.

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband,” Limnol. Oceanogr. Methods 1(1), 1–9 (2003).

Bogorad, L.

A. Bennett and L. Bogorad, “Complementary chromatic adaptation in a filamentous blue-green alga,” J. Cell Biol. 58(2), 419–435 (1973).
[CrossRef] [PubMed]

Bouman, H. A.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Bracher, A.

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

Bricaud, A.

A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
[CrossRef]

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4(1), 237–253 (2006).
[CrossRef]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C1), C11010 (2004).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

Bruyant, F.

J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
[CrossRef]

Burrows, J. P.

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

Carder, K. L.

Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ. 89(3), 361–368 (2004).
[CrossRef]

Carvalho, L.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[CrossRef]

Chee Yew Leong, S.

S. Chee Yew Leong and S. Taguchi, “Optical characteristics of the harmful dinoflagellate Alexandrium tamarense in response to different nitrogen sources,” Harmful Algae 4(2), 211–219 (2005).
[CrossRef]

Chen, J. Y.

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

Chen, Y. W.

Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res. 25(4), 445–453 (2003).
[CrossRef]

Ciotti, A.

A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[CrossRef]

Ciotti, A. M.

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4(1), 237–253 (2006).
[CrossRef]

Claustre, H.

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24(3), GB3016 (2010), doi:.
[CrossRef]

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
[CrossRef]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C1), C11010 (2004).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

Cleveland, J. S.

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

Codd, G. A.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[CrossRef]

Cohen-Bazire, G.

R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev. 35(2), 171–205 (1971).
[PubMed]

Cullen, J.

A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[CrossRef]

Dall’Olmo, G.

Dessailly, D.

Dinter, T.

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

Dokulil, M. T.

Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res. 25(4), 445–453 (2003).
[CrossRef]

Doney, S. C.

C. B. Mouw, J. A. Yoder, and S. C. Doney, “Impact of phytoplankton community size on a linked global ocean optical and ecosystem model,” J. Mar. Syst. 89(1), 61–75 (2012).
[CrossRef]

Duforet-Gaurier, L.

Feng, L. Q.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24(8), 757–774 (2002).
[CrossRef]

Filippino, K. C.

X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
[CrossRef]

Fleckner, W.

W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr. 31(3), 478–490 (1986).
[CrossRef]

Fuentes-Yaco, C.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Fujiki, T.

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24(9), 859–874 (2002).
[CrossRef]

Fujiwara, A.

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[CrossRef]

Fukushima, T.

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

Gentili, B.

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24(3), GB3016 (2010), doi:.
[CrossRef]

Gitelson, A. A.

Gong, F.

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

Gons, H. J.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[CrossRef]

Gorsky, G.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

Guidi, L.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

Guo, L.

Z. Ke, P. Xie, and L. Guo, “Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China),” Hydrobiologia 607(1), 41–49 (2008).
[CrossRef]

Hattori, H.

A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
[CrossRef]

Henriksen, P.

P. A. Stæhr, P. Henriksen, and S. Markager, “Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability,” Mar. Ecol. Prog. Ser. 238, 47–59 (2002).
[CrossRef]

Hill, V.

A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
[CrossRef]

Hirawake, T.

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[CrossRef]

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

Horne, E. P. W.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Hu, C. M.

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

Huang, H. Q.

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

Hunter, P. D.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[CrossRef]

Huot, Y.

A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
[CrossRef]

J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
[CrossRef]

Ibanez, F.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

Imai, A.

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

Jackson, G. A.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

T. L. Richardson and G. A. Jackson, “Small phytoplankton and carbon export from the surface ocean,” Science 315(5813), 838–840 (2007).
[CrossRef] [PubMed]

Johnsen, G.

G. Johnsen, B. B. Prézelin, and R. V. M. Jovine, “Fluorescence excitation spectra and light utilization in two red tide dinoflagellates,” Limnol. Oceanogr. 42(5, Part 2), 1166–1177 (1997).
[CrossRef]

Jovine, R. V. M.

G. Johnsen, B. B. Prézelin, and R. V. M. Jovine, “Fluorescence excitation spectra and light utilization in two red tide dinoflagellates,” Limnol. Oceanogr. 42(5, Part 2), 1166–1177 (1997).
[CrossRef]

Ke, Z.

Z. Ke, P. Xie, and L. Guo, “Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China),” Hydrobiologia 607(1), 41–49 (2008).
[CrossRef]

Kostadinov, T. S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[CrossRef]

Kunisawa, R.

R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev. 35(2), 171–205 (1971).
[PubMed]

Kutser, T.

T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci. 67(1–2), 303–312 (2006).
[CrossRef]

Kyewalyanga, M.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Lampert, W.

W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr. 31(3), 478–490 (1986).
[CrossRef]

Langner, U.

J. Toepel, U. Langner, and C. Wilhelm, “Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level,” J. Phycol. 41(6), 1099–1109 (2005).
[CrossRef]

Larouche, P.

A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
[CrossRef]

Laurion, I.

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband,” Limnol. Oceanogr. Methods 1(1), 1–9 (2003).

Lazzara, L.

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32(2), 403–415 (1987).
[CrossRef]

Le, C. F.

C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619(1), 27–37 (2009).
[CrossRef]

Lee, Z. P.

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ. 89(3), 361–368 (2004).
[CrossRef]

Legendre, L.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

Lewis, M.

A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[CrossRef]

Li, D. Q.

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

Li, J. S.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

Li, W. K. W.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Li, Y. L.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

Li, Y. M.

C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619(1), 27–37 (2009).
[CrossRef]

Liu, M. L.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

Liu, X. H.

Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).

Loisel, H.

Lubac, B.

Luo, L. C.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Lutz, V.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Ma, R. H.

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

Maass, H.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Maberly, S. C.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[CrossRef]

Mandel, M.

R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev. 35(2), 171–205 (1971).
[PubMed]

Mannino, A.

X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
[CrossRef]

Mao, Z. H.

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

Maritorena, S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[CrossRef]

Markager, S.

P. A. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[CrossRef]

P. A. Stæhr, P. Henriksen, and S. Markager, “Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability,” Mar. Ecol. Prog. Ser. 238, 47–59 (2002).
[CrossRef]

Marshall, H. G.

X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
[CrossRef]

Matsuoka, A.

A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
[CrossRef]

A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
[CrossRef]

Matsushita, B.

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

Metsamaa, L.

T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci. 67(1–2), 303–312 (2006).
[CrossRef]

Millán-Núñez, E.

E. Millán-Núñez and R. Millán-Núñez, “Specific absorption coefficient and phytoplankton community structure in the Southern Region of the California Current during January 2002,” J. Oceanogr. 66(5), 719–730 (2010).
[CrossRef]

Millán-Núñez, R.

E. Millán-Núñez and R. Millán-Núñez, “Specific absorption coefficient and phytoplankton community structure in the Southern Region of the California Current during January 2002,” J. Oceanogr. 66(5), 719–730 (2010).
[CrossRef]

Mitchell, B. G.

T. A. Moisan and B. G. Mitchell, “Photophysiological acclimation of Phaeocystis Antarctica Karsten under light limitation,” Limnol. Oceanogr. 44(2), 247–258 (1999).
[CrossRef]

B. G. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).
[CrossRef]

Moisan, T. A.

T. A. Moisan and B. G. Mitchell, “Photophysiological acclimation of Phaeocystis Antarctica Karsten under light limitation,” Limnol. Oceanogr. 44(2), 247–258 (1999).
[CrossRef]

Morel, A.

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

Mouw, C. B.

C. B. Mouw, J. A. Yoder, and S. C. Doney, “Impact of phytoplankton community size on a linked global ocean optical and ecosystem model,” J. Mar. Syst. 89(1), 61–75 (2012).
[CrossRef]

C. B. Mouw and J. A. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res. 115(C12), C12018 (2010), doi: .
[CrossRef]

Mulholland, M. R.

X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
[CrossRef]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

Oubelkheir, K.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C1), C11010 (2004).
[CrossRef]

Pan, D. L.

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

Pan, X. J.

X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
[CrossRef]

Peeken, I.

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

Peters, S. W. M.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[CrossRef]

Picheral, M.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

Pillai, M. G.

R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin,” Process Biochem. 34(8), 795–801 (1999).
[CrossRef]

Platt, T.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Poulin, M.

A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
[CrossRef]

Prézelin, B. B.

G. Johnsen, B. B. Prézelin, and R. V. M. Jovine, “Fluorescence excitation spectra and light utilization in two red tide dinoflagellates,” Limnol. Oceanogr. 42(5, Part 2), 1166–1177 (1997).
[CrossRef]

Prieur, L.

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32(2), 403–415 (1987).
[CrossRef]

Qin, B. Q.

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res. 25(4), 445–453 (2003).
[CrossRef]

Rai, H.

W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr. 31(3), 478–490 (1986).
[CrossRef]

Ras, J.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C1), C11010 (2004).
[CrossRef]

Ravishankar, G. A.

R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin,” Process Biochem. 34(8), 795–801 (1999).
[CrossRef]

Richardson, T. L.

T. L. Richardson and G. A. Jackson, “Small phytoplankton and carbon export from the surface ocean,” Science 315(5813), 838–840 (2007).
[CrossRef] [PubMed]

Röttgers, R.

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

Roy, S.

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband,” Limnol. Oceanogr. Methods 1(1), 1–9 (2003).

Saitoh, S. I.

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[CrossRef]

Sand-Jensen, K.

P. A. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[CrossRef]

Sarada, R.

R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin,” Process Biochem. 34(8), 795–801 (1999).
[CrossRef]

Sathyendranath, S.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32(2), 403–415 (1987).
[CrossRef]

Sciandra, A.

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

Sekimura, Y.

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

Shang, S. L.

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

Shi, Z. Q.

Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).

Siegel, D. A.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[CrossRef]

Simis, S. G. H.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[CrossRef]

Sosik, H.

H. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).
[CrossRef]

Stæhr, P. A.

P. A. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[CrossRef]

P. A. Stæhr, P. Henriksen, and S. Markager, “Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability,” Mar. Ecol. Prog. Ser. 238, 47–59 (2002).
[CrossRef]

Stanier, R. Y.

R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev. 35(2), 171–205 (1971).
[PubMed]

Stemmann, L.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

Stramski, D.

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24(3), GB3016 (2010), doi:.
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

Strömbeck, N.

T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci. 67(1–2), 303–312 (2006).
[CrossRef]

Stuart, V.

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Sun, D. Y.

C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619(1), 27–37 (2009).
[CrossRef]

Suzuki, K.

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[CrossRef]

Taguchi, S.

S. Chee Yew Leong and S. Taguchi, “Optical characteristics of the harmful dinoflagellate Alexandrium tamarense in response to different nitrogen sources,” Harmful Algae 4(2), 211–219 (2005).
[CrossRef]

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24(9), 859–874 (2002).
[CrossRef]

Tassan, S.

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24(8), 757–774 (2002).
[CrossRef]

Taylor, B. E.

W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr. 31(3), 478–490 (1986).
[CrossRef]

Teubner, K.

Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res. 25(4), 445–453 (2003).
[CrossRef]

Toepel, J.

J. Toepel, U. Langner, and C. Wilhelm, “Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level,” J. Phycol. 41(6), 1099–1109 (2005).
[CrossRef]

Tyler, A. N.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[CrossRef]

Uitz, J.

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24(3), GB3016 (2010), doi:.
[CrossRef]

J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
[CrossRef]

Ulloa, O.

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

Vahtmäe, E.

T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci. 67(1–2), 303–312 (2006).
[CrossRef]

van der Woerd, H. J.

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

Vantrepotte, V.

Vincent, W.

A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
[CrossRef]

Vountas, M.

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

Wang, M. Z.

Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).

Weidemann, A. D.

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

Wilhelm, C.

J. Toepel, U. Langner, and C. Wilhelm, “Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level,” J. Phycol. 41(6), 1099–1109 (2005).
[CrossRef]

Xie, P.

Z. Ke, P. Xie, and L. Guo, “Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China),” Hydrobiologia 607(1), 41–49 (2008).
[CrossRef]

Yin, Y.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).

Yoder, J. A.

C. B. Mouw, J. A. Yoder, and S. C. Doney, “Impact of phytoplankton community size on a linked global ocean optical and ecosystem model,” J. Mar. Syst. 89(1), 61–75 (2012).
[CrossRef]

C. B. Mouw and J. A. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res. 115(C12), C12018 (2010), doi: .
[CrossRef]

Yoshimura, K.

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

Yu, K.

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

Zaitsu, N.

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

Zha, Y.

C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619(1), 27–37 (2009).
[CrossRef]

Zhang, Y. L.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).

Zhu, Q. K.

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

Appl. Opt. (1)

Bacteriol. Rev. (1)

R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, “Purification and properties of unicellular blue-green algae (order Chroococcales),” Bacteriol. Rev. 35(2), 171–205 (1971).
[PubMed]

Biogeosciences (3)

A. Bracher, M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, “Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data,” Biogeosciences 6(5), 751–764 (2009).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[CrossRef]

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[CrossRef]

Deep-Sea Res. (1)

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

Ecol. Inform. (1)

Z. H. Mao, V. Stuart, D. L. Pan, J. Y. Chen, F. Gong, H. Q. Huang, and Q. K. Zhu, “Effects of phytoplankton species composition on absorption spectra and modelled hyperspectral reflectance,” Ecol. Inform. 5(5), 359–366 (2010).
[CrossRef]

Estuar. Coast. Shelf Sci. (2)

A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, and H. Hattori, “Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic,” Estuar. Coast. Shelf Sci. 82(3), 537–546 (2009).
[CrossRef]

T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitoring cyanobacterial blooms by satellite remote sensing,” Estuar. Coast. Shelf Sci. 67(1–2), 303–312 (2006).
[CrossRef]

Global Biogeochem. Cycles (1)

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24(3), GB3016 (2010), doi:.
[CrossRef]

Harmful Algae (1)

S. Chee Yew Leong and S. Taguchi, “Optical characteristics of the harmful dinoflagellate Alexandrium tamarense in response to different nitrogen sources,” Harmful Algae 4(2), 211–219 (2005).
[CrossRef]

Hydrobiologia (3)

C. F. Le, Y. M. Li, Y. Zha, and D. Y. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619(1), 27–37 (2009).
[CrossRef]

K. Yoshimura, N. Zaitsu, Y. Sekimura, B. Matsushita, T. Fukushima, and A. Imai, “Parameterization of chlorophyll a-specific absorption coefficients and effects of their variations in a highly eutrophic lake: a case study at Lake Kasumigaura, Japan,” Hydrobiologia (to be published), doi: (2012).
[CrossRef]

Z. Ke, P. Xie, and L. Guo, “Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China),” Hydrobiologia 607(1), 41–49 (2008).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. van der Woerd, J. S. Li, and Y. L. Li, “Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China),” IEEE Trans. Geosci. Rem. Sens. 47(7), 1937–1948 (2009).
[CrossRef]

J. Cell Biol. (1)

A. Bennett and L. Bogorad, “Complementary chromatic adaptation in a filamentous blue-green alga,” J. Cell Biol. 58(2), 419–435 (1973).
[CrossRef] [PubMed]

J. Geophys. Res. (5)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211–3230 (2003), doi: .
[CrossRef]

A. Matsuoka, V. Hill, Y. Huot, M. Babin, and A. Bricaud, “Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications,” J. Geophys. Res. 116(C2), C02007 (2011), doi: .
[CrossRef]

C. M. Hu, Z. P. Lee, R. H. Ma, K. Yu, D. Q. Li, and S. L. Shang, “Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[CrossRef]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C1), C11010 (2004).
[CrossRef]

C. B. Mouw and J. A. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res. 115(C12), C12018 (2010), doi: .
[CrossRef]

J. Lake Sci. (1)

Y. Yin, Y. L. Zhang, M. Z. Wang, X. H. Liu, and Z. Q. Shi, “Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus,” J. Lake Sci. (to be published).

J. Mar. Syst. (1)

C. B. Mouw, J. A. Yoder, and S. C. Doney, “Impact of phytoplankton community size on a linked global ocean optical and ecosystem model,” J. Mar. Syst. 89(1), 61–75 (2012).
[CrossRef]

J. Oceanogr. (1)

E. Millán-Núñez and R. Millán-Núñez, “Specific absorption coefficient and phytoplankton community structure in the Southern Region of the California Current during January 2002,” J. Oceanogr. 66(5), 719–730 (2010).
[CrossRef]

J. Phycol. (1)

J. Toepel, U. Langner, and C. Wilhelm, “Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chl a specific absorption coefficients at the taxon level,” J. Phycol. 41(6), 1099–1109 (2005).
[CrossRef]

J. Plankton Res. (4)

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Y. W. Chen, B. Q. Qin, K. Teubner, and M. T. Dokulil, “Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China,” J. Plankton Res. 25(4), 445–453 (2003).
[CrossRef]

T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24(9), 859–874 (2002).
[CrossRef]

S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘transmittance-reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res. 24(8), 757–774 (2002).
[CrossRef]

Limnol. Oceanogr. (11)

H. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).
[CrossRef]

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size, and export of large aggregates: a world–ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[CrossRef]

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[CrossRef]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53(2), 614–630 (2008).
[CrossRef]

W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase,” Limnol. Oceanogr. 31(3), 478–490 (1986).
[CrossRef]

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32(2), 403–415 (1987).
[CrossRef]

G. Johnsen, B. B. Prézelin, and R. V. M. Jovine, “Fluorescence excitation spectra and light utilization in two red tide dinoflagellates,” Limnol. Oceanogr. 42(5, Part 2), 1166–1177 (1997).
[CrossRef]

T. A. Moisan and B. G. Mitchell, “Photophysiological acclimation of Phaeocystis Antarctica Karsten under light limitation,” Limnol. Oceanogr. 44(2), 247–258 (1999).
[CrossRef]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[CrossRef]

Limnol. Oceanogr. Methods (2)

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4(1), 237–253 (2006).
[CrossRef]

I. Laurion, F. Blouin, and S. Roy, “The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV waveband,” Limnol. Oceanogr. Methods 1(1), 1–9 (2003).

Mar. Ecol. Prog. Ser. (3)

P. A. Stæhr, P. Henriksen, and S. Markager, “Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability,” Mar. Ecol. Prog. Ser. 238, 47–59 (2002).
[CrossRef]

H. A. Bouman, T. Platt, S. Sathyendranath, W. K. W. Li, V. Stuart, C. Fuentes-Yaco, H. Maass, E. P. W. Horne, O. Ulloa, V. Lutz, and M. Kyewalyanga, “Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing,” Mar. Ecol. Prog. Ser. 258, 19–30 (2003).
[CrossRef]

P. A. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

B. G. Mitchell, “Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).
[CrossRef]

Process Biochem. (1)

R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from Spirulina sp.: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin,” Process Biochem. 34(8), 795–801 (1999).
[CrossRef]

Remote Sens. Environ. (3)

Z. P. Lee and K. L. Carder, “Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance,” Remote Sens. Environ. 89(3), 361–368 (2004).
[CrossRef]

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[CrossRef]

X. J. Pan, A. Mannino, H. G. Marshall, K. C. Filippino, and M. R. Mulholland, “Remote sensing of phytoplankton community composition along the northeast coast of the United States,” Remote Sens. Environ. 115(12), 3731–3747 (2011).
[CrossRef]

Science (1)

T. L. Richardson and G. A. Jackson, “Small phytoplankton and carbon export from the surface ocean,” Science 315(5813), 838–840 (2007).
[CrossRef] [PubMed]

Other (2)

H. J. Hu, R. Y. Li, Y. X. Wei, H. Zhu, J. Chen, and Z. Shi, Freshwater algae in China (Shanghai Science and Technology Press, Shanghai (in Chinese), 1980).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Distribution of the 8 sampling sites in Lake Taihu in 2005 and 2006.

Fig. 2
Fig. 2

Monthly variation of phytoplankton community composition in Lake Taihu (data pooled for 8 sites in 2005 and 2006).

Fig. 3
Fig. 3

Chla concentrations in spring and summer in 2005 (a) and 2006 (b).

Fig. 4
Fig. 4

Spectral absorption coefficients of phytoplankton in spring (a) and summer (b).

Fig. 5
Fig. 5

Mean spectral absorption coefficients of phytoplankton in spring and summer.

Fig. 6
Fig. 6

Mean spectral Chla-specific absorption coefficients of phytoplankton in spring and summer.

Fig. 7
Fig. 7

Photographs of S. obliquus (a) and M. aeruginosa (b) cells at 40 times magnification.

Fig. 8
Fig. 8

Increases in cell volume and phytoplankton Chla concentration during the 17 day growth of S. obliquus and M. aeruginosa in laboratory culture (data pooled for three parallel samples).

Fig. 9
Fig. 9

Variation in spectral absorption and Chla-specific absorption coefficients during the growth of S. obliquus (a: absorption, c: specific absorption) and M. aeruginosa (b: absorption, d: specific absorption).

Fig. 10
Fig. 10

Mean spectral Chla-specific absorption coefficients of S. obliquus and M. aeruginosa.

Fig. 11
Fig. 11

Correlations between absorption and Chla-specific absorption coefficients and Chla concentration of S. obliquus (a, c) and M. aeruginosa (b, d).

Fig. 12
Fig. 12

Increases in PC concentration during the 17 day growth of M. aeruginosa in laboratory culture (a) and exponential correlation between PC concentration and phytoplankton absorption coefficient at 625 nm (data pooled for three parallel samples).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

O D s ( λ ) = 0.378O D f ( λ ) + 0.523O D f ( λ ) 2  O D f ( λ )0.4 AU
a p ( λ ) = 2.303O D s ( λ )S/V
a ph ( λ ) = a p ( λ ) a d ( λ )
O D s ( λ )= 0.423O D f ( λ )+ 0.479O D f ( λ ) 2      O D s 0.4 AU
C PC = O D 620 0.474O D 652 5.34
a * ph ( λ ) = a ph ( λ )/ C Chla
a ph * (PAR)= 1 301 Σ λ=400 λ=700 a ph * (λ)
a ph ( 675 )=0.051 D 0.256 C Chla 0.884     (n=18, r 2 =0.99,p<0.001)
a ph ( 440 )=0.186 D 0.555 C Chla 0.829     (n=18, r 2 =0.99,p<0.001)
a ph * ( 675 )=0.053 D 0.263 C Chla 0.121     (n=18, r 2 =0.90,p<0.001)
a ph * ( 440 )=0.193 D 0.567 C Chla 0.173     (n=18, r 2 =0.97,p<0.001)

Metrics