Abstract

We introduce an optical time-of-flight image sensor taking advantage of a MEMS-based laser scanning device. Unlike previous approaches, our concept benefits from the high timing resolution and the digital signal flexibility of single-photon pixels in CMOS to allow for a nearly ideal cooperation between the image sensor and the scanning device. This technique enables a high signal-to-background light ratio to be obtained, while simultaneously relaxing the constraint on size of the MEMS mirror. These conditions are critical for devising practical and low-cost depth sensors intended to operate in uncontrolled environments, such as outdoors. A proof-of-concept prototype capable of operating in real-time was implemented. This paper focuses on the design and characterization of a 256x64-pixel image sensor, which also comprises an event-driven readout circuit, an array of 64 row-level high-throughput time-to-digital converters, and a 16Gbit/s global readout circuit. Quantitative evaluation of the sensor under 2klux of background light revealed a repeatability error of 13.5cm throughout the distance range of 20 meters.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Lim, “The 2nd wave of the digital consumer revolution: Challenges and opportunities!” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2008), 18–23.
  2. J. Dibbel, “Gestural Interfaces: Controlling computers with our bodies,” in 10 Emerging Technologies Technology Review issue May/June 2011 (MIT, Boston, 2011).
  3. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
    [CrossRef]
  4. S. B. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2004).
  5. T. Oggier, B. Büttgen, F. Lustenberger, R. Becker, B. Rüegg, and A. Hodac, “SwissRanger SR3000 and first experiences based on miniaturized 3D-TOF cameras,” in Proceedings of 1st Range Imaging Research Day, (ETH Zurich, Switzerland, 2005), 97–108.
  6. C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
    [CrossRef]
  7. T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
    [CrossRef]
  8. G. Yahav, G. J. Iddan, and D. Mandelboum, “3D imaging camera for gaming application,” in Proceedings of IEEE International Conference on Consumer Electronics (Institute of Electrical and Electronics Engineers, New York, 2007), 1–2.
  9. T. Ringbeck, “A 3D time of flight camera for object detection,” in Proceedings of the 8th Conf. on Optical 3D Measurement Techniques (ETH, Zurich, Switzerland, 2007).
  10. C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
    [CrossRef]
  11. G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
    [CrossRef]
  12. R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2011), 410–412.
  13. D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
    [CrossRef]
  14. S.-J. Kim, J. D. K. Kim, S.-W. Han, B. Kang, K. Lee, and C.-Y. Kim, “A 640x480 image sensor with unified pixel architecture for 2D/3D imaging in 0.11μm CMOS,” in Proceedings of IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, New York, 2011), 92–93.
  15. B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
    [CrossRef]
  16. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards Fully Autonomous Driving: Systems and Algorithms”, in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 163–168.
  17. K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, and J. Miura, “Pedestrian recognition using high-definition LIDAR” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 405–410.
  18. C. Niclass, M. Soga, H. Matsubara, and S. Kato, “A 100m-range 10-frame/s 340x96-pixel time-of-flight depth sensor in 0.18μm CMOS,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 107–110.
  19. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
    [CrossRef]
  20. B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
    [CrossRef]
  21. T. Sandner, M. Wildenhain, T. Klose, H. Schenk, S. Schwarzer, V. Hinkov, H. Höfler, and H. Wölfelschneider, “3D imaging using resonant large-aperture MEMS mirror arrays and laser distance measurement,” Proceedings of IEEE/LEOS Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2008), 78–79.
  22. T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
    [CrossRef]
  23. K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami are preparing a manuscript to be called “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256x64-pixel single-photon imager”.
  24. I. Aoyagi, K. Shimaoka, S. Kato, W. Makishi, Y. Kawai, S. Tanaka, T. Ono, M. Esashi, and K. Hane, “2-axis MEMS scanner for a laser range finder,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2011), 39–40.
  25. C. Niclass, M. Sergio, and E. Charbon, “A CMOS 64x48 single photon avalanche diode array with event-driven readout,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2006), 556–559.
  26. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
    [CrossRef]
  27. C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18µm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 2010), 14.3.1–14.3.4.
  28. L. Pancheri, N. Massari, F. Borguetti, and D. Stoppa, “A 32x32 SPAD pixel array with nanosecond gating and analog readout,” Proceedings of the International Image Sensor Workshop (IISS, 2011), R40.
  29. C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of Large-Scale Non-Uniformities in a 20k TDC/SPAD Array Integrated in a 130nm CMOS Process,” in Proceedings of IEEE European Solid-State Device Research Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 331–334.
  30. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
    [CrossRef]

2011 (1)

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

2010 (4)

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

2009 (2)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

2008 (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

2006 (1)

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

2005 (1)

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

2001 (1)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

1981 (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Besse, P.-A.

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Charbon, E.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Cova, S.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Dammann, J. F.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Davidovic, M.

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

Favi, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

Giza, M. M.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Gonzo, L.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Grasshoff, T.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Halin, I. A.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Henderson, R. K.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Homma, M.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Kawahito, S.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

Lange, R.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Lawler, W. B.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Maeda, Y.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Malfatti, M.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Massari, N.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Monnier, F.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

Nguyen, H. M.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Pancheri, L.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Perenzoni, M.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Rochas, A.

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Sadler, L. C.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Sandner, T.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Sawada, T.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Schenk, H.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Schwarz, B.

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

Seitz, P.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Stann, B. L.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Stoppa, D.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Ushinaga, T.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Wildenhain, M.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Zach, G.

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

Zimmermann, H.

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

IEEE J. Solid-state Circuits (4)

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Nat. Photonics (1)

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

Proc. SPIE (3)

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Other (18)

T. Sandner, M. Wildenhain, T. Klose, H. Schenk, S. Schwarzer, V. Hinkov, H. Höfler, and H. Wölfelschneider, “3D imaging using resonant large-aperture MEMS mirror arrays and laser distance measurement,” Proceedings of IEEE/LEOS Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2008), 78–79.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami are preparing a manuscript to be called “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256x64-pixel single-photon imager”.

I. Aoyagi, K. Shimaoka, S. Kato, W. Makishi, Y. Kawai, S. Tanaka, T. Ono, M. Esashi, and K. Hane, “2-axis MEMS scanner for a laser range finder,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2011), 39–40.

C. Niclass, M. Sergio, and E. Charbon, “A CMOS 64x48 single photon avalanche diode array with event-driven readout,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2006), 556–559.

C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18µm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 2010), 14.3.1–14.3.4.

L. Pancheri, N. Massari, F. Borguetti, and D. Stoppa, “A 32x32 SPAD pixel array with nanosecond gating and analog readout,” Proceedings of the International Image Sensor Workshop (IISS, 2011), R40.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of Large-Scale Non-Uniformities in a 20k TDC/SPAD Array Integrated in a 130nm CMOS Process,” in Proceedings of IEEE European Solid-State Device Research Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 331–334.

G. Yahav, G. J. Iddan, and D. Mandelboum, “3D imaging camera for gaming application,” in Proceedings of IEEE International Conference on Consumer Electronics (Institute of Electrical and Electronics Engineers, New York, 2007), 1–2.

T. Ringbeck, “A 3D time of flight camera for object detection,” in Proceedings of the 8th Conf. on Optical 3D Measurement Techniques (ETH, Zurich, Switzerland, 2007).

S. B. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2004).

T. Oggier, B. Büttgen, F. Lustenberger, R. Becker, B. Rüegg, and A. Hodac, “SwissRanger SR3000 and first experiences based on miniaturized 3D-TOF cameras,” in Proceedings of 1st Range Imaging Research Day, (ETH Zurich, Switzerland, 2005), 97–108.

H. K. Lim, “The 2nd wave of the digital consumer revolution: Challenges and opportunities!” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2008), 18–23.

J. Dibbel, “Gestural Interfaces: Controlling computers with our bodies,” in 10 Emerging Technologies Technology Review issue May/June 2011 (MIT, Boston, 2011).

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards Fully Autonomous Driving: Systems and Algorithms”, in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 163–168.

K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, and J. Miura, “Pedestrian recognition using high-definition LIDAR” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 405–410.

C. Niclass, M. Soga, H. Matsubara, and S. Kato, “A 100m-range 10-frame/s 340x96-pixel time-of-flight depth sensor in 0.18μm CMOS,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 107–110.

S.-J. Kim, J. D. K. Kim, S.-W. Han, B. Kang, K. Lee, and C.-Y. Kim, “A 640x480 image sensor with unified pixel architecture for 2D/3D imaging in 0.11μm CMOS,” in Proceedings of IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, New York, 2011), 92–93.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2011), 410–412.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics