Abstract

We introduce an optical time-of-flight image sensor taking advantage of a MEMS-based laser scanning device. Unlike previous approaches, our concept benefits from the high timing resolution and the digital signal flexibility of single-photon pixels in CMOS to allow for a nearly ideal cooperation between the image sensor and the scanning device. This technique enables a high signal-to-background light ratio to be obtained, while simultaneously relaxing the constraint on size of the MEMS mirror. These conditions are critical for devising practical and low-cost depth sensors intended to operate in uncontrolled environments, such as outdoors. A proof-of-concept prototype capable of operating in real-time was implemented. This paper focuses on the design and characterization of a 256x64-pixel image sensor, which also comprises an event-driven readout circuit, an array of 64 row-level high-throughput time-to-digital converters, and a 16Gbit/s global readout circuit. Quantitative evaluation of the sensor under 2klux of background light revealed a repeatability error of 13.5cm throughout the distance range of 20 meters.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Lim, “The 2nd wave of the digital consumer revolution: Challenges and opportunities!” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2008), 18–23.
  2. J. Dibbel, “Gestural Interfaces: Controlling computers with our bodies,” in 10 Emerging Technologies Technology Review issue May/June 2011 (MIT, Boston, 2011).
  3. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
    [CrossRef]
  4. S. B. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2004).
  5. T. Oggier, B. Büttgen, F. Lustenberger, R. Becker, B. Rüegg, and A. Hodac, “SwissRanger SR3000 and first experiences based on miniaturized 3D-TOF cameras,” in Proceedings of 1st Range Imaging Research Day, (ETH Zurich, Switzerland, 2005), 97–108.
  6. C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
    [CrossRef]
  7. T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
    [CrossRef]
  8. G. Yahav, G. J. Iddan, and D. Mandelboum, “3D imaging camera for gaming application,” in Proceedings of IEEE International Conference on Consumer Electronics (Institute of Electrical and Electronics Engineers, New York, 2007), 1–2.
  9. T. Ringbeck, “A 3D time of flight camera for object detection,” in Proceedings of the 8th Conf. on Optical 3D Measurement Techniques (ETH, Zurich, Switzerland, 2007).
  10. C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
    [CrossRef]
  11. G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
    [CrossRef]
  12. R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2011), 410–412.
  13. D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
    [CrossRef]
  14. S.-J. Kim, J. D. K. Kim, S.-W. Han, B. Kang, K. Lee, and C.-Y. Kim, “A 640x480 image sensor with unified pixel architecture for 2D/3D imaging in 0.11μm CMOS,” in Proceedings of IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, New York, 2011), 92–93.
  15. B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
    [CrossRef]
  16. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards Fully Autonomous Driving: Systems and Algorithms”, in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 163–168.
  17. K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, and J. Miura, “Pedestrian recognition using high-definition LIDAR” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 405–410.
  18. C. Niclass, M. Soga, H. Matsubara, and S. Kato, “A 100m-range 10-frame/s 340x96-pixel time-of-flight depth sensor in 0.18μm CMOS,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 107–110.
  19. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
    [CrossRef]
  20. B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
    [CrossRef]
  21. T. Sandner, M. Wildenhain, T. Klose, H. Schenk, S. Schwarzer, V. Hinkov, H. Höfler, and H. Wölfelschneider, “3D imaging using resonant large-aperture MEMS mirror arrays and laser distance measurement,” Proceedings of IEEE/LEOS Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2008), 78–79.
  22. T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
    [CrossRef]
  23. K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami are preparing a manuscript to be called “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256x64-pixel single-photon imager”.
  24. I. Aoyagi, K. Shimaoka, S. Kato, W. Makishi, Y. Kawai, S. Tanaka, T. Ono, M. Esashi, and K. Hane, “2-axis MEMS scanner for a laser range finder,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2011), 39–40.
  25. C. Niclass, M. Sergio, and E. Charbon, “A CMOS 64x48 single photon avalanche diode array with event-driven readout,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2006), 556–559.
  26. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
    [CrossRef]
  27. C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18µm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 2010), 14.3.1–14.3.4.
  28. L. Pancheri, N. Massari, F. Borguetti, and D. Stoppa, “A 32x32 SPAD pixel array with nanosecond gating and analog readout,” Proceedings of the International Image Sensor Workshop (IISS, 2011), R40.
  29. C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of Large-Scale Non-Uniformities in a 20k TDC/SPAD Array Integrated in a 130nm CMOS Process,” in Proceedings of IEEE European Solid-State Device Research Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 331–334.
  30. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
    [CrossRef]

2011

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

2010

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

2009

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

2008

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

2006

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

2005

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

2001

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

1981

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Besse, P.-A.

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Charbon, E.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Cova, S.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Dammann, J. F.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Davidovic, M.

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

Favi, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

Giza, M. M.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Gonzo, L.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Grasshoff, T.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Halin, I. A.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Henderson, R. K.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Homma, M.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Kawahito, S.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

Lange, R.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Lawler, W. B.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Maeda, Y.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Malfatti, M.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Massari, N.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Monnier, F.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

Nguyen, H. M.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Pancheri, L.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Perenzoni, M.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Rochas, A.

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

Sadler, L. C.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Sandner, T.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Sawada, T.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Schenk, H.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Schwarz, B.

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

Seitz, P.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Stann, B. L.

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

Stoppa, D.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

Ushinaga, T.

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

Wildenhain, M.

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Zach, G.

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

Zimmermann, H.

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

IEEE J. Quantum Electron.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

IEEE J. Solid-state Circuits

C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-state Circuits 40(9), 1847–1854 (2005).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-state Circuits 44(7), 1977–1989 (2009).
[CrossRef]

G. Zach, M. Davidovic, and H. Zimmermann, “A 16x16 pixel distance sensor with in-pixel circuitry that tolerates 150klx of ambient light,” IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010).
[CrossRef]

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10µm lock-in pixels in 0.18µm CMOS imaging technology,” IEEE J. Solid-state Circuits 46(1), 248–258 (2011).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column level 10b time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Nat. Photonics

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[CrossRef]

Proc. SPIE

T. Ushinaga, I. A. Halin, T. Sawada, S. Kawahito, M. Homma, and Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” Proc. SPIE 6056, 605604, (2006).
[CrossRef]

B. L. Stann, J. F. Dammann, M. M. Giza, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
[CrossRef]

T. Sandner, T. Grasshoff, M. Wildenhain, and H. Schenk, “Synchronized microscanner array for large aperture receiver optics of LIDAR systems,” Proc. SPIE 7594, 75940C (2010).
[CrossRef]

Rev. Sci. Instrum.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[CrossRef]

Other

T. Sandner, M. Wildenhain, T. Klose, H. Schenk, S. Schwarzer, V. Hinkov, H. Höfler, and H. Wölfelschneider, “3D imaging using resonant large-aperture MEMS mirror arrays and laser distance measurement,” Proceedings of IEEE/LEOS Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2008), 78–79.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami are preparing a manuscript to be called “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256x64-pixel single-photon imager”.

I. Aoyagi, K. Shimaoka, S. Kato, W. Makishi, Y. Kawai, S. Tanaka, T. Ono, M. Esashi, and K. Hane, “2-axis MEMS scanner for a laser range finder,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, New York, 2011), 39–40.

C. Niclass, M. Sergio, and E. Charbon, “A CMOS 64x48 single photon avalanche diode array with event-driven readout,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2006), 556–559.

C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18µm CMOS technology,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 2010), 14.3.1–14.3.4.

L. Pancheri, N. Massari, F. Borguetti, and D. Stoppa, “A 32x32 SPAD pixel array with nanosecond gating and analog readout,” Proceedings of the International Image Sensor Workshop (IISS, 2011), R40.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, D. Stoppa, F. Borghetti, Y. Maruyama, M. Gersbach, R. K. Henderson, C. Bruschini, and E. Charbon, “Characterization of Large-Scale Non-Uniformities in a 20k TDC/SPAD Array Integrated in a 130nm CMOS Process,” in Proceedings of IEEE European Solid-State Device Research Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 331–334.

G. Yahav, G. J. Iddan, and D. Mandelboum, “3D imaging camera for gaming application,” in Proceedings of IEEE International Conference on Consumer Electronics (Institute of Electrical and Electronics Engineers, New York, 2007), 1–2.

T. Ringbeck, “A 3D time of flight camera for object detection,” in Proceedings of the 8th Conf. on Optical 3D Measurement Techniques (ETH, Zurich, Switzerland, 2007).

S. B. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2004).

T. Oggier, B. Büttgen, F. Lustenberger, R. Becker, B. Rüegg, and A. Hodac, “SwissRanger SR3000 and first experiences based on miniaturized 3D-TOF cameras,” in Proceedings of 1st Range Imaging Research Day, (ETH Zurich, Switzerland, 2005), 97–108.

H. K. Lim, “The 2nd wave of the digital consumer revolution: Challenges and opportunities!” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2008), 18–23.

J. Dibbel, “Gestural Interfaces: Controlling computers with our bodies,” in 10 Emerging Technologies Technology Review issue May/June 2011 (MIT, Boston, 2011).

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards Fully Autonomous Driving: Systems and Algorithms”, in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 163–168.

K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, and J. Miura, “Pedestrian recognition using high-definition LIDAR” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (Institute of Electrical and Electronics Engineers, New York, 2011), 405–410.

C. Niclass, M. Soga, H. Matsubara, and S. Kato, “A 100m-range 10-frame/s 340x96-pixel time-of-flight depth sensor in 0.18μm CMOS,” in Proceedings of IEEE European Solid-State Circuits Conference (Institute of Electrical and Electronics Engineers, New York, 2011), 107–110.

S.-J. Kim, J. D. K. Kim, S.-W. Han, B. Kang, K. Lee, and C.-Y. Kim, “A 640x480 image sensor with unified pixel architecture for 2D/3D imaging in 0.11μm CMOS,” in Proceedings of IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, New York, 2011), 92–93.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128x96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 2011), 410–412.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Proposed MEMS scanned TOF sensor architecture.

Fig. 2
Fig. 2

SPAD-based image sensor architecture. The image sensor is capable of achieving a throughput of 16Gbit/s, or equivalently, 800 million TOF evaluations per second.

Fig. 3
Fig. 3

Cross-sectional view of the p+/p-well/deep n-well SPAD. The left half-section shows the device along a vertical imaginary cut, whereas the right half-section shows it along a horizontal one. The avalanching p+/deep n-well junction has nonetheless a circular shape.

Fig. 4
Fig. 4

In-pixel front-end and readout circuit. The 7-transistor circuit performs passive quenching and recharge functions. M7 signals a photon detection by pulling the row output line down for the duration of the SPAD recharge pulse.

Fig. 5
Fig. 5

Timing diagram of the LDs and illustration of the column activation pattern. Since each LD emits a laser pulse with a delay of 3.33µs with respect to the others, each TDC may be effectively shared on a row basis. The maximum theoretical TOF is limited by the TDC range of 853ns, or equivalently 128 meters.

Fig. 6
Fig. 6

Simplified event-driven readout of a single pixel row. Column decoder lines are not drawn in the picture.

Fig. 7
Fig. 7

Flash TDC array architecture.

Fig. 8
Fig. 8

Example of waveforms of some TDC and PLL signals. In this example, two TOF evaluations are illustrated. Prior to the first TOF evaluation, the START signal is asserted once, thereby initiating the state of S[11:0]. Note that, when sampled and despite potential setup time violations, the phase state {ϕi}i≤3 always settles in the interval [0,7].

Fig. 9
Fig. 9

Schematic of the third-order PLL. A passive second-order loop-filter LP(ω) is placed off-chip.

Fig. 10
Fig. 10

(a) Photomicrograph of the CMOS single-photon image sensor. The chip measures 8x5mm2. (b) Experimental setup of the overall LIDAR system.

Fig. 11
Fig. 11

DCR image acquired at 30°C, measured in counts per second.

Fig. 12
Fig. 12

DCR distribution at 30°C. The measured DCR from all 16384 pixels were sorted and plotted as a function of pixel percentile. On right-hand side, the same plot is shown with only the 2% noisiest pixels.

Fig. 13
Fig. 13

(a) Measured DNL of individual TDCs in the array versus measurable time. (b) Measured INL of individual TDCs as well as envelope curves of the maximum deviations. Note that the worst INL among the 64 TDCs was −0.56LSB (−116ps).

Fig. 14
Fig. 14

Superimposed plot of 64 normalized histograms on photon arrival times. The histograms were acquired while exposing a complete pixel column to a 40ps pulsed laser source repeated at 40MHz. The laser trigger signal was divided by 34 inside a FPGA device before being connected to the TDC start signal.

Fig. 15
Fig. 15

Detailed view of the detected pulses in the set of 64 histograms. The average IRF at FWHM was 519ps. Inset: semi-log plot of the same data showing the slightly asymmetric IRF.

Fig. 16
Fig. 16

(a) Mean measured distance under 2klux of background light as a function of the actual distance for a pixel on the center of the non-cooperative target. (b) Non-linearity error (square marker, blue curve) and standard deviation (round marker, red curve) as a function of the actual distance.

Fig. 17
Fig. 17

Illustration of depth data acquired using the proposed sensor. The measured distance in meters is color coded, red being close to the sensor and blue being farther from it.

Tables (1)

Tables Icon

Table 1 Comparison of Performance to the Recently Published State-of-the-art in CMOS

Metrics