Abstract

We present polarimetry, i.e. the detection of optical rotation of light polarization, in a configuration suitable for femtosecond spectroscopy. The polarimeter is based on common-path optical heterodyne interferometry and provides fast and highly sensitive detection of rotatory power. Femtosecond pump and polarimeter probe beams are integrated into a recently developed accumulative technique that further enhances sensitivity with respect to single-pulse methods. The high speed of the polarimeter affords optical rotation detection during the pump-pulse illumination period of a few seconds. We illustrate the concept on the photodissociation of the enantiomers of methyl p-tolyl sulfoxide. The sensitivity of rotatory detection, i.e. the minimum rotation angle that can be measured, is determined experimentally including all noise sources to be 0.10 milli-degrees for a measurement time of only one second and an interaction length of 250 μm. The suitability of the presented setup for femtosecond studies is demonstrated in a non-resonant two-photon photodissociation experiment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418–2424 (2006).
    [CrossRef]
  2. L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, and K. D. H. Dorkenoo, “Broadband transient dichroism spectroscopy in chiral molecules,” Opt. Lett. 35, 381–383 (2010).
    [CrossRef] [PubMed]
  3. I. Eom, S. Ahn, H. Rhee, and M. Cho, “Broadband near UV to visible optical activity measurement using self-heterodyned method,” Opt. Express 19, 10017–10028 (2011).
    [CrossRef] [PubMed]
  4. M. Bonmarin and J. Helbing, “Time-resolved vibrational circular dichroism and optical rotation with ultrashort laser pulses,” in Ultrafast Phenomena XVII, M. Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein, and A. J. Taylor, eds. (Oxford University Press, 2011), 862–864.
  5. P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
    [CrossRef] [PubMed]
  6. J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
    [CrossRef] [PubMed]
  7. M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
    [CrossRef] [PubMed]
  8. X. Xie and J. D. Simon, “Protein conformational relaxation following photodissociation of CO from carbon-monoxymyoglobin: picosecond circular dichroism and absorption studies,” Biochemistry 30, 3682–3692 (1991).
    [CrossRef] [PubMed]
  9. S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
    [CrossRef] [PubMed]
  10. J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
    [CrossRef]
  11. A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
    [CrossRef] [PubMed]
  12. J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
    [CrossRef]
  13. W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
    [CrossRef]
  14. G. Haenisch and G. Beier, “Ein Polarimeter zur Messung schneller chemischer Reaktionen,” Z. Anal. Chem. 261, 280–286 (1972).
    [CrossRef]
  15. P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
    [CrossRef] [PubMed]
  16. D. R. Bobbitt and E. S. Yeung, “Improvements in detectabilities in polarimeters using high-frequency modulation,” Appl. Spectrosc. 40, 407–410 (1986).
    [CrossRef]
  17. J. Lee and D. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Opt. Commun. 256, 337–341 (2005).
    [CrossRef]
  18. C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
    [CrossRef]
  19. J. Lin, K. Chen, and D. Su, “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun. 238, 113–118 (2004).
    [CrossRef]
  20. C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun. 230, 259–266 (2004).
    [CrossRef]
  21. F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Product accumulation for ultrasensitive femtochemistry,” Opt. Lett. 32, 3346–3348 (2007).
    [CrossRef] [PubMed]
  22. F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J. 96, 2763–2770 (2009).
    [CrossRef] [PubMed]
  23. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [CrossRef]
  24. R. C. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-Matrices,” J. Opt. Soc. Am. 38, 671–683 (1948).
    [CrossRef]
  25. Y. Guo and W. S. Jenks, “Photolysis of alkyl aryl sulfoxides: α-cleavage, hydrogen abstraction, and racemization,” J. Org. Chem. 62, 857–864 (1997).
    [CrossRef]
  26. K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
    [CrossRef]
  27. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge, 2009).
  28. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
    [CrossRef] [PubMed]
  29. D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2009).
  30. Stanford Research Systems, “Digital Lock-In amplifiers SR810 and SR830,” Manual (1997).
  31. P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
    [CrossRef] [PubMed]
  32. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2009).
    [CrossRef]
  33. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
    [CrossRef]
  34. P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
    [CrossRef]
  35. Rudolph Research, “The Autopol VI Automatic Polarimeter,” http://www.rudolphresearch.com (2010).

2012 (1)

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[CrossRef]

2011 (1)

2010 (2)

L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, and K. D. H. Dorkenoo, “Broadband transient dichroism spectroscopy in chiral molecules,” Opt. Lett. 35, 381–383 (2010).
[CrossRef] [PubMed]

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[CrossRef] [PubMed]

2009 (5)

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J. 96, 2763–2770 (2009).
[CrossRef] [PubMed]

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[CrossRef] [PubMed]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2009).
[CrossRef]

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

2007 (1)

2006 (1)

2005 (2)

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
[CrossRef] [PubMed]

J. Lee and D. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Opt. Commun. 256, 337–341 (2005).
[CrossRef]

2004 (2)

J. Lin, K. Chen, and D. Su, “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun. 238, 113–118 (2004).
[CrossRef]

C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun. 230, 259–266 (2004).
[CrossRef]

2003 (1)

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[CrossRef] [PubMed]

2001 (1)

1997 (2)

Y. Guo and W. S. Jenks, “Photolysis of alkyl aryl sulfoxides: α-cleavage, hydrogen abstraction, and racemization,” J. Org. Chem. 62, 857–864 (1997).
[CrossRef]

C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
[CrossRef]

1992 (1)

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

1991 (1)

X. Xie and J. D. Simon, “Protein conformational relaxation following photodissociation of CO from carbon-monoxymyoglobin: picosecond circular dichroism and absorption studies,” Biochemistry 30, 3682–3692 (1991).
[CrossRef] [PubMed]

1989 (1)

P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
[CrossRef] [PubMed]

1988 (1)

S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[CrossRef] [PubMed]

1986 (1)

1976 (1)

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
[CrossRef] [PubMed]

1972 (1)

G. Haenisch and G. Beier, “Ein Polarimeter zur Messung schneller chemischer Reaktionen,” Z. Anal. Chem. 261, 280–286 (1972).
[CrossRef]

1965 (1)

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

1961 (1)

W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
[CrossRef]

1948 (1)

1941 (1)

Ahn, S.

Akimov, D.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[CrossRef]

Axelrod, D.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
[CrossRef] [PubMed]

Barron, L. D.

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge, 2009).

Beier, G.

G. Haenisch and G. Beier, “Ein Polarimeter zur Messung schneller chemischer Reaktionen,” Z. Anal. Chem. 261, 280–286 (1972).
[CrossRef]

Bjorling, S.

S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[CrossRef] [PubMed]

Bobbitt, D. R.

P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
[CrossRef] [PubMed]

D. R. Bobbitt and E. S. Yeung, “Improvements in detectabilities in polarimeters using high-frequency modulation,” Appl. Spectrosc. 40, 407–410 (1986).
[CrossRef]

Boeglin, A.

Bonmarin, M.

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[CrossRef] [PubMed]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

M. Bonmarin and J. Helbing, “Time-resolved vibrational circular dichroism and optical rotation with ultrashort laser pulses,” in Ultrafast Phenomena XVII, M. Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein, and A. J. Taylor, eds. (Oxford University Press, 2011), 862–864.

Brixner, T.

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2009).
[CrossRef]

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J. 96, 2763–2770 (2009).
[CrossRef] [PubMed]

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Product accumulation for ultrasensitive femtochemistry,” Opt. Lett. 32, 3346–3348 (2007).
[CrossRef] [PubMed]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

Buchvarov, I.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[CrossRef] [PubMed]

Chang, J.

C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
[CrossRef]

Chang, M.

C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
[CrossRef]

Chen, K.

J. Lin, K. Chen, and D. Su, “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun. 238, 113–118 (2004).
[CrossRef]

Cho, M.

Chou, C.

C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun. 230, 259–266 (2004).
[CrossRef]

C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
[CrossRef]

Cohen, D.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[CrossRef] [PubMed]

Cregut, O.

Dietzek, B.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[CrossRef]

Dimler, F.

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J. 96, 2763–2770 (2009).
[CrossRef] [PubMed]

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Product accumulation for ultrasensitive femtochemistry,” Opt. Lett. 32, 3346–3348 (2007).
[CrossRef] [PubMed]

Djerassi, C.

W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
[CrossRef]

Dorkenoo, K. D. H.

Dunn, R. C.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

Elson, E.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
[CrossRef] [PubMed]

Eom, I.

Erskine, S. R.

P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
[CrossRef] [PubMed]

Fechner, S.

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

Feng, C.

C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
[CrossRef]

Fiebig, T.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[CrossRef] [PubMed]

Fischer, P.

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
[CrossRef] [PubMed]

Gerber, G.

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2009).
[CrossRef]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

Goldbeck, R. A.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

Green, M. M.

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

Guo, Y.

Y. Guo and W. S. Jenks, “Photolysis of alkyl aryl sulfoxides: α-cleavage, hydrogen abstraction, and racemization,” J. Org. Chem. 62, 857–864 (1997).
[CrossRef]

Hache, F.

Haenisch, G.

G. Haenisch and G. Beier, “Ein Polarimeter zur Messung schneller chemischer Reaktionen,” Z. Anal. Chem. 261, 280–286 (1972).
[CrossRef]

Helbing, J.

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[CrossRef] [PubMed]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

M. Bonmarin and J. Helbing, “Time-resolved vibrational circular dichroism and optical rotation with ultrashort laser pulses,” in Ultrafast Phenomena XVII, M. Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein, and A. J. Taylor, eds. (Oxford University Press, 2011), 862–864.

Hsieh, T.

C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun. 230, 259–266 (2004).
[CrossRef]

Huang, Y.

C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
[CrossRef]

Jenks, W. S.

Y. Guo and W. S. Jenks, “Photolysis of alkyl aryl sulfoxides: α-cleavage, hydrogen abstraction, and racemization,” J. Org. Chem. 62, 857–864 (1997).
[CrossRef]

Jones, R. C.

Jung, G.

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J. 96, 2763–2770 (2009).
[CrossRef] [PubMed]

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Product accumulation for ultrasensitive femtochemistry,” Opt. Lett. 32, 3346–3348 (2007).
[CrossRef] [PubMed]

Kliger, D.

S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[CrossRef] [PubMed]

Kliger, D. S.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

Klyne, W.

W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
[CrossRef]

Koppel, D. E.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
[CrossRef] [PubMed]

Král, P.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[CrossRef] [PubMed]

Kuntz, I.

S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[CrossRef] [PubMed]

Kuo, W.

C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun. 230, 259–266 (2004).
[CrossRef]

Langhojer, F.

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J. 96, 2763–2770 (2009).
[CrossRef] [PubMed]

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Product accumulation for ultrasensitive femtochemistry,” Opt. Lett. 32, 3346–3348 (2007).
[CrossRef] [PubMed]

Laur, P.

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

Lee, J.

J. Lee and D. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Opt. Commun. 256, 337–341 (2005).
[CrossRef]

Lewis, J. W.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

Lide, D.

D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2009).

Lin, J.

J. Lin, K. Chen, and D. Su, “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun. 238, 113–118 (2004).
[CrossRef]

Lohr, A.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[CrossRef] [PubMed]

Mangot, L.

Melillo, J. T.

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

Meyer-Ilse, J.

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[CrossRef]

Milder, S.

S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[CrossRef] [PubMed]

Mislow, K.

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

Moffitt, W.

W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
[CrossRef]

Moscowitz, A.

W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
[CrossRef]

Niezborala, C.

Nuernberger, P.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2009).
[CrossRef]

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

Rhee, H.

Rice, P. D.

P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
[CrossRef] [PubMed]

Romeo, M.

Schlessinger, J.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
[CrossRef] [PubMed]

Selle, R.

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

Shao, Y. Y.

P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
[CrossRef] [PubMed]

Shapiro, M.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[CrossRef] [PubMed]

Simmons, T.

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

Simon, J. D.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

X. Xie and J. D. Simon, “Protein conformational relaxation following photodissociation of CO from carbon-monoxymyoglobin: picosecond circular dichroism and absorption studies,” Biochemistry 30, 3682–3692 (1991).
[CrossRef] [PubMed]

Su, D.

J. Lee and D. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Opt. Commun. 256, 337–341 (2005).
[CrossRef]

J. Lin, K. Chen, and D. Su, “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun. 238, 113–118 (2004).
[CrossRef]

Taupier, G.

Teague, T. G.

P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
[CrossRef] [PubMed]

Teng, H.

C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun. 230, 259–266 (2004).
[CrossRef]

Ternay, A. L.

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

Thanopulos, I.

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[CrossRef] [PubMed]

Trifonov, A.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[CrossRef] [PubMed]

Vogt, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2009).
[CrossRef]

Webb, W. W.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
[CrossRef] [PubMed]

Woodward, R. B.

W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
[CrossRef]

Würthner, F.

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[CrossRef] [PubMed]

Xie, X.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

X. Xie and J. D. Simon, “Protein conformational relaxation following photodissociation of CO from carbon-monoxymyoglobin: picosecond circular dichroism and absorption studies,” Biochemistry 30, 3682–3692 (1991).
[CrossRef] [PubMed]

Yeung, E. S.

Appl. Spectrosc. (1)

Biochemistry (1)

X. Xie and J. D. Simon, “Protein conformational relaxation following photodissociation of CO from carbon-monoxymyoglobin: picosecond circular dichroism and absorption studies,” Biochemistry 30, 3682–3692 (1991).
[CrossRef] [PubMed]

Biophys. J. (3)

S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J. 53, 659–664 (1988).
[CrossRef] [PubMed]

F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J. 96, 2763–2770 (2009).
[CrossRef] [PubMed]

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
[CrossRef] [PubMed]

Chirality (2)

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005).
[CrossRef] [PubMed]

M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc. 83, 4013–4018 (1961).
[CrossRef]

K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc. 87, 1958–1976 (1965).
[CrossRef]

J. Chem. Phys. (1)

J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131, 174507 (2009).
[CrossRef] [PubMed]

J. Opt. A (1)

P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A 11, 085202 (2009).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Org. Chem. (1)

Y. Guo and W. S. Jenks, “Photolysis of alkyl aryl sulfoxides: α-cleavage, hydrogen abstraction, and racemization,” J. Org. Chem. 62, 857–864 (1997).
[CrossRef]

J. Phys. Chem. (1)

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

J. Phys. Chem. Lett. (1)

J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-dehydrocholesterol,” J. Phys. Chem. Lett. 3, 182–185 (2012).
[CrossRef]

Opt. Commun. (4)

J. Lee and D. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Opt. Commun. 256, 337–341 (2005).
[CrossRef]

C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun. 141, 314–321 (1997).
[CrossRef]

J. Lin, K. Chen, and D. Su, “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun. 238, 113–118 (2004).
[CrossRef]

C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun. 230, 259–266 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett. 90, 033001 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81, 043104 (2010).
[CrossRef] [PubMed]

Talanta (1)

P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta 36, 473–478 (1989).
[CrossRef] [PubMed]

Z. Anal. Chem. (1)

G. Haenisch and G. Beier, “Ein Polarimeter zur Messung schneller chemischer Reaktionen,” Z. Anal. Chem. 261, 280–286 (1972).
[CrossRef]

Other (5)

M. Bonmarin and J. Helbing, “Time-resolved vibrational circular dichroism and optical rotation with ultrashort laser pulses,” in Ultrafast Phenomena XVII, M. Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein, and A. J. Taylor, eds. (Oxford University Press, 2011), 862–864.

D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2009).

Stanford Research Systems, “Digital Lock-In amplifiers SR810 and SR830,” Manual (1997).

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge, 2009).

Rudolph Research, “The Autopol VI Automatic Polarimeter,” http://www.rudolphresearch.com (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram for the polarimeter setup. LD, laser diode; P, polarizer; EOM, electro-optic modulator; S, sample in a capillary; VWP, variable wave plate; AN, analyzer; PD, photodiode; LIA, lock-in amplifier; FG, function generator; HVA, high-voltage amplifier. Orientations are given in brackets relative to the x axis.

Fig. 2
Fig. 2

(a) Schematic setup. Three beams are spatially overlapped in the capillary to record the linear absorption (red) as well as the optical rotation (blue) before, during and after illumination with femtosecond laser pulses (purple). (b) Schematic measurement procedure. Depicted is the repetition rate of the pump pulses (1 kHz), the sampling clock, the pump shutter behavior, which is equal to the detected signal of the pump photodiode (pump PD), and the time axis with dedicated time points and the measurement steps labels. The colors of the time axis correspond to those in the data of the following figures.

Fig. 3
Fig. 3

(a) Photodissociation of methyl p-tolyl sulfoxide molecules in the case of the R-(left) and S-enantiomer (right). After irradiation with UV light, the sulfoxide molecules break at the stereogenic center, resulting in two achiral products (middle) [25]. (b) Optical rotation measurement for the R-enantiomer in acetonitrile with a concentration of c = 2 mg/ml, a sampling rate of 100 Hz and a lock-in amplifier time constant of TLIA = 100 ms. The data are plotted in blue, red, and green corresponding to the colors of the time intervals introduced in Fig. 2(b). The two vertical black lines indicate the time window during which the pump shutter is open. A fit (black dashed line), with the model introduced in Section 5 (or more detailed in Appendix A), is presented. (c) Optical rotation measurements for the S-enantiomer in acetonitrile with concentrations of c = 4 mg/ml (dashed) and c = 2 mg/ml (solid), a sampling rate of 100 Hz and a lock-in amplifier time constant of TLIA = 100 ms.

Fig. 4
Fig. 4

Linear absorption spectra of methyl p-tolyl sulfoxide before (blue solid line) and after illumination (blue dashed line) with a concentration of c = 0.015 mg/ml and acetonitrile as solvent. The linear absorption spectrum for the used sulfoxide molecules shows an absorption band at λmax = 245 nm, whereas for small wavelengths the influence of the solvent is dominant. After UV irradiation, the sulfoxide molecules break at the stereogenic center, resulting in two non-chiral fragment products, as shown in Fig. 3(a). These products lead to a non-zero absorption in the region around 325 nm (blue dashed curve). The red curve shows the linear absorption change of an accumulative femtosecond experiment with the R-enantiomer and c = 2 mg/ml in acetonitrile at a sampling rate of 50 Hz.

Fig. 5
Fig. 5

(a) Fitting result (solid curves) [Eq. (15)] and experimental data (crosses), recorded with 100 Hz, of the exposure part. The global fit results in a linear relationship of η and the pump power [see (b)]. With a concentration of c = 6 mg/ml of S-(-)-methyl p-tolyl sulfoxide in acetonitrile, the expected optical rotation Δα change of ≈ 5.0 mdeg is achieved only in the case of 1.0 μJ. In the case of lower intensities an equilibrium at smaller optical rotations is obtained. (b) Dependence of the fit parameter η on the pulse energy as given by the global fit to the experimental data in (a) (blue), and dependence of the optical rotation change Δα on the pulse energy (red). To corroborate that the two graphs do not form two straight lines, their ratio is shown as an inset (note the scale).

Fig. 6
Fig. 6

Resolution of the optical rotation change Δα (at 1 s measurement time) for different settings of the retardation δ [Eq. (7)] and different time constants of the lock-in amplifier. The resolution has its optimum at a retardation of δ = 2.3° for all time constants. The best resolution value, at a time constant of 100 ms, is 0.10 mdeg.

Fig. 7
Fig. 7

(a) Sketch of the setup used to introduce the time delay between the pump pulse pair. For the measurement of the cross-correlation a SFG crystal is included after the second dichroic mirror. (b) Comparison of the cross-correlation and the polarimeter measurement with two pump pulses. The shape of both curves are nearly identical, as can be seen from the two Gaussian fits. The data are vertically offset for clarity; note the different ordinates.

Fig. 8
Fig. 8

Simulated example for the diffusion model obtained via Eq. (12) and the condition Δα = αprα0 with the following parameters: α0 = 0.5 deg, η = 1.8×10−3 / pulse, dpr = 0.2 s−1, dpu = 0.4 s−1, τ = 3.0 s. The curve shows the decay due to illumination (red) and the following increase in optical rotation due to diffusion effects (green). Inset: optical rotations αi in different volumes i defined by the beam geometry with rates for diffusion di and photoconversion efficiency η.

Fig. 9
Fig. 9

Response function of the used lock-in amplifier. The experimental data, sampled at 100 Hz, is shown in crosses for different lock-in amplifier time constants (red: 10 ms, green: 30 ms, blue: 100 ms). Equation (14) was used for the fitting procedure (solid lines) resulting in the values presented in Table 2.

Tables (2)

Tables Icon

Table 1 Dependence of the Diffusion Rates dpu and dpr on the Solvent

Tables Icon

Table 2 Results of the Fitting Procedure of the Response of the Lock-In Amplifier Presented in Fig. 9*

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E out = AN VWP ( δ , 45 ° ) S ( α ) EOM ( ω t ) E in .
E out = ( 0 0 0 1 ) Rot [ 45 ° ] ( exp ( i δ 2 ) 0 0 exp ( i δ 2 ) ) Rot [ + 45 ° ] × ( cos ( α ) sin ( α ) sin ( α ) cos ( α ) ) ( exp ( i ω t 2 ) 0 0 exp ( i ω t 2 ) ) 1 2 ( 1 1 ) .
I out = | E out | 2 = 1 2 [ 1 + sin ( 2 α ) cos ( δ ) cos ( ω t ) + sin ( δ ) sin ( ω t ) ] ,
I out = 1 2 [ 1 + A sin ( ω t + ϕ ) ]
a sin ( ω t ) + b cos ( ω t ) = a 2 + b 2 sin [ ω t + arctan ( b a ) ] ,
A = a 2 + b 2 = sin 2 ( δ ) + [ sin ( 2 α ) cos ( δ ) ] 2 ,
ϕ = arctan ( b a ) = arctan [ sin ( 2 α ) tan ( δ ) ] .
α = 1 2 arcsin [ tan ( δ ) tan ( ϕ ) ]
Δ ϕ ( t ) = ϕ ( t ) ϕ 0 ,
k = 2 tan ( δ ) ,
d α pu ( t ) d t = d pu [ α 0 α pu ( t ) ] η α pu ( t ) , α pr ( t ) α pu ( t ) ,
d α pu ( t ) d t = d pu [ α 0 α pu ( t ) ] , d α pr ( t ) d t = d pr [ α pu ( t ) α pr ( t ) ] ,
α pr ( t , τ ) = α 0 × { 1 t < 0 d pu + η exp [ ( d pu + η ) t ] d pu + η 0 t τ d pu exp [ d pr ( τ t ) ( d pu + η ) τ ] { 1 + exp [ ( d pu + η ) τ ] } η d pu ( d pu + η ) ( d pr d pu ) ( d pu + η ) + d pr ( d pu + { 1 exp [ d pu ( τ t ) ] + exp ( d pu t η τ ) } η ) ( d pr d pu ) ( d pu + η ) t > τ .
R LIA ( t ) = 2 A 2 π ( b 1 + b 2 ) { Θ ( m t ) exp [ ( t m ) 2 2 b 1 2 ] + Θ ( t m ) exp [ ( t m ) 2 2 b 2 2 ] } .
Erf LIA ( t ) = 2 π t R LIA ( x ) d x + O
F ( t , τ ) = ( α pr * R LIA ) ( t , τ ) = α pr ( x , τ ) R LIA ( x t ) d x ,

Metrics