Abstract

Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ~100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 μJ/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by time-resolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [CrossRef] [PubMed]
  2. Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B 52(3), 1800–1805 (1995).
    [CrossRef]
  3. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  4. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
    [CrossRef]
  5. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
    [CrossRef]
  6. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
    [CrossRef] [PubMed]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
    [CrossRef] [PubMed]
  8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
    [CrossRef] [PubMed]
  9. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
    [CrossRef] [PubMed]
  10. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
    [CrossRef] [PubMed]
  11. A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
    [CrossRef] [PubMed]
  12. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
    [CrossRef] [PubMed]
  13. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
    [CrossRef] [PubMed]
  14. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
    [CrossRef] [PubMed]
  15. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
    [CrossRef] [PubMed]
  16. G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
    [CrossRef]
  17. R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
    [CrossRef]
  18. R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
    [CrossRef]
  19. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
    [CrossRef]
  20. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
    [CrossRef] [PubMed]
  21. L. Sun, H. Dong, W. Xie, Z. An, X. Shen, and Z. Chen, “Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod,” Opt. Express 18(15), 15371–15376 (2010).
    [CrossRef] [PubMed]
  22. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
    [CrossRef]
  23. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
    [CrossRef]
  24. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
    [CrossRef]
  25. G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
    [CrossRef] [PubMed]
  26. D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
    [CrossRef] [PubMed]
  27. G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
    [CrossRef]
  28. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
    [CrossRef]
  29. R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
    [CrossRef]
  30. J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
    [CrossRef]
  31. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
    [CrossRef]
  32. H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
    [CrossRef] [PubMed]
  33. J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
    [CrossRef] [PubMed]

2011 (4)

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[CrossRef] [PubMed]

2010 (4)

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

L. Sun, H. Dong, W. Xie, Z. An, X. Shen, and Z. Chen, “Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod,” Opt. Express 18(15), 15371–15376 (2010).
[CrossRef] [PubMed]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[CrossRef]

2009 (1)

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

2008 (8)

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
[CrossRef] [PubMed]

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

2007 (2)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

2006 (3)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

2005 (1)

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

2004 (1)

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[CrossRef] [PubMed]

2002 (2)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

1999 (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

1996 (1)

A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[CrossRef] [PubMed]

1995 (1)

Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B 52(3), 1800–1805 (1995).
[CrossRef]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

1990 (1)

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

1989 (1)

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[CrossRef] [PubMed]

An, Z.

André, R.

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
[CrossRef] [PubMed]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Avrutin, V.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Bajoni, D.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Balili, R.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Baratto, C.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Bassani, F.

Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B 52(3), 1800–1805 (1995).
[CrossRef]

Baumberg, J. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Benndorf, G.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Bhattacharya, P.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

Bloch, J.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[CrossRef] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Bouchoule, S.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Brecha, R. J.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[CrossRef] [PubMed]

Bretagnon, T.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Brimont, C.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Bugallo, A. L.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Butté, R.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Carlin, J.

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

Carlin, J. F.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Carlin, J.-F.

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

Carmichael, H. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[CrossRef] [PubMed]

Castiglia, A.

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

Chen, J.-R.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Chen, Y.

Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B 52(3), 1800–1805 (1995).
[CrossRef]

Chen, Z.

Christmann, G.

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Comini, E.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Czekalla, C.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Dang, S.

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
[CrossRef] [PubMed]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Das, A.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

Deng, H.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[CrossRef]

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[CrossRef] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Dong, H.

Fallert, J.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Faure, S.

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Feltin, E.

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Ferroni, M.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Forchel, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Gerritsen, H. C.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Gil, B.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Götzinger, S.

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

Grandjean, N.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Grundmann, M.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Grundy, A. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Guillet, T.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Guo, W.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[CrossRef]

Heo, J.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

Hey, R.

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

Hochmuth, H.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Hsieh, W.-F.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Imamog¯lu, A.

A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[CrossRef] [PubMed]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Jacopin, G.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Jahnke, F.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Jankowski, M.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Johne, R.

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

Julien, F. H.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Kaliteevski, M.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Kalt, H.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Kasprzak, J.

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
[CrossRef] [PubMed]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Kavokin, A.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Kavokin, A. V.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Kimble, H. J.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[CrossRef] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Klingshirn, C.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Koch, S. W.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kuipers, L.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Kuo, C.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Lagoudakis, P. G.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Lee, C.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Lefebvre, P.

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

Lemaître, A.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Leroux, M.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Levrat, J.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

Leymarie, J.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Lin, S.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Liu, W.-R.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Lorenz, M.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Lu, T.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Maier-Flaig, F.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Malpuech, G.

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
[CrossRef] [PubMed]

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Mexis, M.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Miard, A.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Morin, S. E.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Morkoc, H.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Mossberg, T. W.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Mouti, A.

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Orosz, L.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Özgür, Ü.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Pau, S.

A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[CrossRef] [PubMed]

Pfeiffer, L.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Ploog, K. H.

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

Press, D.

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

Qi, J.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

Raizen, M. G.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[CrossRef] [PubMed]

Ram, R. J.

A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[CrossRef] [PubMed]

Ravindran, P.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Réveret, F.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Rheinländer, B.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Rigutti, L.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Rossbach, G.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Rühle, S.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

Sagnes, I.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Santori, C.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Sartor, J.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Schmidt-Grund, R.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Schneider, D.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Semond, F.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Senellart, P.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

Shen, X.

Shimada, R.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[CrossRef] [PubMed]

Solnyshkov, D.

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

Solnyshkov, D. D.

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
[CrossRef] [PubMed]

Solomon, G. S.

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

Stadelmann, P.

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Sun, L.

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Tchernycheva, M.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Thiele, C.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Thompson, R. J.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[CrossRef] [PubMed]

Tredicucci, A.

Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B 52(3), 1800–1805 (1995).
[CrossRef]

van Vugt, L. K.

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[CrossRef] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[CrossRef] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

von Högersthal, G. B.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

Wang, L.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

Weihs, G.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[CrossRef] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Wertz, E.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

West, K.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Wu, Q.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Wu, Y.-C.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

Xie, J.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

Xie, W.

Yamamoto, Y.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[CrossRef]

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[CrossRef] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[CrossRef] [PubMed]

Zamfirescu, M.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

Zhang, L.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

Zhang, X.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

Zhao, S.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

Zhou, G.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

Zhou, H.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Zhou, Y.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

Zhu, Y.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Zúñiga-Pérez, J.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

Appl. Phys. B (1)

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008).
[CrossRef]

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009).
[CrossRef]

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[CrossRef]

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005).
[CrossRef]

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008).
[CrossRef]

Nanoscale (1)

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011).
[CrossRef] [PubMed]

Nature (2)

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. A (1)

A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (5)

Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B 52(3), 1800–1805 (1995).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008).
[CrossRef]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010).
[CrossRef]

Phys. Rev. Lett. (9)

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006).
[CrossRef] [PubMed]

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008).
[CrossRef] [PubMed]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[CrossRef] [PubMed]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007).
[CrossRef] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[CrossRef] [PubMed]

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008).
[CrossRef] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010).
[CrossRef]

Science (2)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scanning electron microscope (SEM) image of ZnO nanowires grown on n-type Si substrate. The wires have an average diameter of ~200-300 nm and a height of ~1.5 - 2.0 μm. The aerial density is ~1x109 cm−2; (b) high resolution transmission electron microscope (HRTEM) image of a ZnO nanowire with the selective area diffraction (SAD) pattern in the inset. The image shows that the nanowire is free of extended defects or stacking faults. The SAD pattern confirms that the nanowires have the wurtzite crystalline structure and grow along the c-axis.

Fig. 2
Fig. 2

(a) schematic of the nanowire-microcavity device with the SEM image of a single nanowire placed on the partial cavity; (b) The calculated electric field intensity distribution of the fundamental x-polarized resonance mode around the nanowire of length 1 μm and diameter 300 nm, embedded in a dielectric cavity. The figure shows the cross-sectional profile of the electrical field intensity in the x-z plane. The boundary of the nanowire in the x-z plane is indicated. Also shown alongside is the refractive index profile of the structure.

Fig. 3
Fig. 3

(a) Low temperature photoluminescence spectrum from nanowire ensemble measured perpendicular to the c-axis of the nanowire showing peaks corresponding to free (XA,XB) and donor bound excitons and their phonon replica; (b)temperature dependence of the exciton resonance and its phonon replica; (c) photoluminescence and transmission characteristics measured from an ensemble of ZnO nanowires.

Fig. 4
Fig. 4

(a) Photoluminescence spectra from the ZnO nanowire-microcavity structure for different values of temperature at zero emission angle. Relative tuning of the exciton resonance X through the cavity mode C is achieved by exploiting different energy shifts of the two modes with temperature; (b) extracted peak energies of polariton emission, shown in a, as a function of temperature. The solid lines are obtained from a solution to the coupled harmonic oscillator model; (c) color contour plot of the angle-resolved dispersion characteristics. The dashed lines representing LP and UP energies are obtained from solving the coupled harmonic oscillator model.

Fig. 5
Fig. 5

(a) Integrated photoluminescence intensity measured normal to the device as a function of excitation. The non-linear threshold is at an incident excitation density Eexc = 1.63 μJ/cm2 which corresponds to a LP density of 1.1x1017 cm−2. Inset: PL spectra measured below, at, and above threshold. The spectra reveal progressive linewidth narrowing along with the non-linear increase in the peak intensity; (b) variation of the emission linewidth and peak energy corresponding to a.

Fig. 6
Fig. 6

(a) Occupancy of LPB as a function of pump power obtained from angle-resolved photoluminescence measured below, at, and above threshold. The solid lines are theoretical fits based on MB or BE distributions (see text); (b) Time resolved photoluminescence measured normal to the sample (from k|| = 0) below, at, and above threshold with a streak camera having an overall resolution of 5 ps.

Metrics