Abstract

We present the first experimental demonstration of a phase-modulated MMF link implementing high-frequency digital transmission in a cost-effective solution based on direct detection. Successful subcarrier transmission of QPSK, 16-QAM and 64-QAM data channels for bit rates up to 120 Mb/s through a 5 km MMF link is achieved over the microwave region comprised between 6 and 20 GHz. The overall capacity of the proposed approach can be further increased by properly accommodating more passband channels in the operative frequency range determined by the phase-to-intensity conversion process provided by the dispersive nature of the optical fiber. In this sense, our results show the possibility of achieving an aggregate bit rate per length product of 144 Gb/s·km and confirm, in consequence, the possibility of broadband phase-modulated radio over fiber transmission through MMF links suitable for multichannel SCM signal distribution.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
    [CrossRef] [PubMed]
  2. M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett. 18(1), 241–243 (2006).
    [CrossRef]
  3. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005).
    [CrossRef]
  4. E. J. Tyler, P. Kourtessis, M. Webster, E. Rochart, T. Quinlan, S. E. M. Dudley, S. D. Walker, R. V. Penty, and I. H. White, “Toward terabit-per-second capacities over multimode fiber links using SCM/WDM techniques,” J. Lightwave Technol. 21(12), 3237–3243 (2003).
    [CrossRef]
  5. J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
    [CrossRef]
  6. I. Gasulla and J. Capmany, “1 Tb/s x km multimode fiber link combining WDM transmission and low-linewidth lasers,” Opt. Express 16(11), 8033–8038 (2008).
    [CrossRef] [PubMed]
  7. P. Hartmann and A. Xin Qian, Wonfor, R. V. Penty, and I. H White, “1-20 GHz directly modulated radio over MMF link,” in Proceedings of IEEE Microwave Photonics MWP2005, (Seoul, South Korea, 2005), 95–98.
  8. I. Gasulla and J. Capmany, “High-frequency radio over fibre QPSK transmission through a 5 km multimode fibre link,” in Proceedings of 33rd European Conference on Optical Communication, (Berlin, Germany, 2007), 2 pp.
  9. D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10-Gb/s and 40-Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in Proceedings of Optical Fiber Communication Conference 2007, (Anaheim, USA, 2007), OTuL3.
  10. V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
    [CrossRef]
  11. H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27(5), 511–521 (2009).
    [CrossRef]
  12. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
    [CrossRef] [PubMed]
  13. M. J. LaGasse and S. Thaniyavaru, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
    [CrossRef]
  14. J. Zhang and T. E. Darcie, “Low-biased microwave-photonic link using optical frequency or phase modulation and fiber-Bragg-grating discriminator,” in Proceedings of Optical Fiber Communication Conference, (Anaheim, USA, 2006), OWG1.
  15. J. M. Wyrwas and M. C. Wu, “Wu, “Dynamic range of frequency modulated direct-detection analog fiber optic links,” J. Lightwave Technol. 27(24), 5552–5562 (2009).
    [CrossRef]
  16. T. E. Darcie, J. Zhang, P. F. Driessen, and J.-J. Eun, “Class-B microwave-photonic link using optical frequency modulation and linear frequency discriminators,” J. Lightwave Technol. 25(1), 157–164 (2007).
    [CrossRef]
  17. I. Gasulla and J. Capmany, “Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems,” Opt. Express 14(20), 9051–9070 (2006).
    [CrossRef] [PubMed]
  18. I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered Microwave Photonic Links,” Opt. Express 19(20), 19758–19774 (2011).
    [CrossRef] [PubMed]
  19. D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
    [CrossRef]
  20. G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
    [CrossRef]
  21. R. A. Shafik, S. Rahman, and A. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering, (Dhaka, Bangladesh, 2006), 408–411.
  22. I. Gasulla and J. Capmany, “Analysis of the harmonic and intermodulation distortion in a multimode fiber optic link,” Opt. Express 15(15), 9366–9371 (2007).
    [CrossRef] [PubMed]
  23. I. Gasulla and J. Capmany, “Simultaneous baseband and radio over fiber signal transmission over a 5 km MMF link,” in Proceedings of IEEE Microwave Photonics MWP2008, (Goald Coast, Australia, 2008), 209–212.

2012 (1)

G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
[CrossRef]

2011 (1)

2010 (2)

D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
[CrossRef]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (3)

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[CrossRef]

I. Gasulla and J. Capmany, “Analysis of the harmonic and intermodulation distortion in a multimode fiber optic link,” Opt. Express 15(15), 9366–9371 (2007).
[CrossRef] [PubMed]

T. E. Darcie, J. Zhang, P. F. Driessen, and J.-J. Eun, “Class-B microwave-photonic link using optical frequency modulation and linear frequency discriminators,” J. Lightwave Technol. 25(1), 157–164 (2007).
[CrossRef]

2006 (3)

I. Gasulla and J. Capmany, “Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems,” Opt. Express 14(20), 9051–9070 (2006).
[CrossRef] [PubMed]

M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett. 18(1), 241–243 (2006).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

2005 (1)

2003 (1)

2000 (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

1997 (1)

M. J. LaGasse and S. Thaniyavaru, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

Alcaro, G.

G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
[CrossRef]

Bucholtz, F.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[CrossRef]

Capmany, J.

Chi, H.

Darcie, T. E.

Devgan, P. S.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[CrossRef]

Driessen, P. F.

Dudley, S. E. M.

Eun, J.-J.

Faccin, P.

G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
[CrossRef]

D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
[CrossRef]

Gasulla, I.

Hoekman, M.

Hsu, R. C. J.

Jalali, B.

Koonen, A. M. J.

M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett. 18(1), 241–243 (2006).
[CrossRef]

Kourtessis, P.

LaGasse, M. J.

M. J. LaGasse and S. Thaniyavaru, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

Lane, P. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

Larrode, M. G.

M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett. 18(1), 241–243 (2006).
[CrossRef]

Leinse, A.

Marpaung, D.

McKinney, J. D.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[CrossRef]

Ng’Oma, A.

M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett. 18(1), 241–243 (2006).
[CrossRef]

Olmos, J. J. V.

M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett. 18(1), 241–243 (2006).
[CrossRef]

Penty, R. V.

Petersen, M. N.

D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
[CrossRef]

Quinlan, T.

Rochart, E.

Roeloffzen, C.

Sayed, A. H.

Shah, R.

Shore, K. A.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Tang, J. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

Tarighat, A.

Tarlazzi, L.

G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
[CrossRef]

D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
[CrossRef]

Tartarini, G.

G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
[CrossRef]

D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
[CrossRef]

Thaniyavaru, S.

M. J. LaGasse and S. Thaniyavaru, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

Tyler, E. J.

Urick, V. J.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[CrossRef]

Visani, D.

G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
[CrossRef]

D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
[CrossRef]

Walker, S. D.

Webster, M.

White, I. H.

Williams, K. J.

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[CrossRef]

Wu, M. C.

Wyrwas, J. M.

Yao, J.

Zhang, J.

Zou, X.

IEEE Photon. Technol. Lett. (3)

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[CrossRef]

M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett. 18(1), 241–243 (2006).
[CrossRef]

M. J. LaGasse and S. Thaniyavaru, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

D. Visani, G. Tartarini, M. N. Petersen, L. Tarlazzi, and P. Faccin, “Link design rules for cost-effective short-range radio over multimode fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3144–3153 (2010).
[CrossRef]

G. Alcaro, D. Visani, L. Tarlazzi, P. Faccin, and G. Tartarini, “Distortion mechanisms originating from modal noise in radio over multimode fiber links,” IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012).
[CrossRef]

V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, “Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE Trans. Microw. Theory Tech. 55(9), 1978–1985 (2007).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (5)

Science (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Other (6)

I. Gasulla and J. Capmany, “Simultaneous baseband and radio over fiber signal transmission over a 5 km MMF link,” in Proceedings of IEEE Microwave Photonics MWP2008, (Goald Coast, Australia, 2008), 209–212.

P. Hartmann and A. Xin Qian, Wonfor, R. V. Penty, and I. H White, “1-20 GHz directly modulated radio over MMF link,” in Proceedings of IEEE Microwave Photonics MWP2005, (Seoul, South Korea, 2005), 95–98.

I. Gasulla and J. Capmany, “High-frequency radio over fibre QPSK transmission through a 5 km multimode fibre link,” in Proceedings of 33rd European Conference on Optical Communication, (Berlin, Germany, 2007), 2 pp.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10-Gb/s and 40-Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in Proceedings of Optical Fiber Communication Conference 2007, (Anaheim, USA, 2007), OTuL3.

R. A. Shafik, S. Rahman, and A. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering, (Dhaka, Bangladesh, 2006), 408–411.

J. Zhang and T. E. Darcie, “Low-biased microwave-photonic link using optical frequency or phase modulation and fiber-Bragg-grating discriminator,” in Proceedings of Optical Fiber Communication Conference, (Anaheim, USA, 2006), OWG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) Measured and computed RF link frequency response and measured spectra of the photodetected SCM signals. (b) 6-MHz-span zoom of the channel over 1 GHz for 1 Mb/s QPSK transmission.

Fig. 3
Fig. 3

Measured EVM (%) versus electrical subcarrier frequency for (a) QPSK, (b) 16-QAM and (c) 64-QAM modulation.

Fig. 4
Fig. 4

Measured constellation diagrams for different modulation formats and bit rates at the subcarrier channel frequencies ranging from 12 to 20 GHz.

Fig. 5
Fig. 5

Multichannel SCM signal distribution in the proposed phase-modulated MMF link.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β(ω)β( ω 0 )+ dβ(ω) dω | ω= ω 0 (ω ω 0 )+ 1 2 d β 2 (ω) d ω 2 | ω= ω 0 (ω ω 0 ) 2 = β 0 +β'(ω ω 0 )+ 1 2 β'' (ω ω 0 ) 2
P s ( ω )= P 0 π ΔW e ω 2 ( 2ΔW ) 2 ,
G RF Φ (Ω)= ( 4 I dc π/ V π ) 2 R in R out e 2 ( β 0 '' LΩΔW ) 2 sin 2 ( β 0 '' Ω 2 L/2 ) | m=1 M 2m( C mm + G mm )   e α m 0 L e j τ m Ω | 2
EVM(%)= P error P reference 100%
P b 2(11/L) log 2 L Q[ ( 3 log 2 L L 2 1 ) 2 EV M 2 log 2 M ],

Metrics