Abstract

This paper presents a detailed analysis of the performance of a recirculating delayed self-heterodyne (R-DSH) method for high-resolution laser lineshape measurement. For increasing the delay time the R-DSH method utilizes circulation of light in a heterodyne ring interferometer (HRI) containing a frequency shifter, delay fiber, and fiber amplifier. It is shown both theoretically and experimentally that unwanted higher order frequency-shifted components induce distortion in the beat signal spectra, which significantly limits the maximum number of circulations. An effective technique is proposed and demonstrated for reducing the distortion by using optical filtering at the HRI output. Furthermore, a practical limit on the number of circulations is investigated by comparing the shape of observed beat signal spectra with theory. It is shown that the maximum delay is limited to about 180 km even with the use of the optical filtering technique.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer, 2009), Chap. 7.
  2. M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
    [CrossRef]
  3. K. Numata, J. Camp, M. A. Krainak, and L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express18(22), 22781–22788 (2010).
    [CrossRef] [PubMed]
  4. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
    [CrossRef]
  5. A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett.19(19), 1463–1465 (2007).
    [CrossRef]
  6. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
    [CrossRef]
  7. O. Ishida, “Novel method of estimation flicker frequency noise in lasers,” IEEE Photon. Technol. Lett.2(11), 784–786 (1990).
    [CrossRef]
  8. H. Tsuchida, “Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method,” Opt. Lett.36(5), 681–683 (2011).
    [CrossRef] [PubMed]
  9. H. Tsuchida, “Characterization of white and flicker frequency modulation noise in narrow-linewidth laser diodes,” IEEE Photon. Technol. Lett.23(11), 727–729 (2011).
    [CrossRef]
  10. H. Tsuchida, “Simple technique for improving the resolution of the delayed self-heterodyne method,” Opt. Lett.15(11), 640–642 (1990).
    [CrossRef] [PubMed]
  11. J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett.4(9), 1063–1066 (1992).
    [CrossRef]
  12. K. Kikuchi, “Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
    [CrossRef]
  13. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  14. M. Murakami and S. Saito, “Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems,” IEEE Photon. Technol. Lett.4(11), 1269–1272 (1992).
    [CrossRef]

2011

H. Tsuchida, “Characterization of white and flicker frequency modulation noise in narrow-linewidth laser diodes,” IEEE Photon. Technol. Lett.23(11), 727–729 (2011).
[CrossRef]

H. Tsuchida, “Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method,” Opt. Lett.36(5), 681–683 (2011).
[CrossRef] [PubMed]

2010

2009

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

2007

A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett.19(19), 1463–1465 (2007).
[CrossRef]

2005

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

1992

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett.4(9), 1063–1066 (1992).
[CrossRef]

M. Murakami and S. Saito, “Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems,” IEEE Photon. Technol. Lett.4(11), 1269–1272 (1992).
[CrossRef]

1990

1989

K. Kikuchi, “Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
[CrossRef]

1980

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Alalusi, M.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Brasil, P.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Camp, J.

Dawson, J. W.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett.4(9), 1063–1066 (1992).
[CrossRef]

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

Gordon, J. P.

Ishida, O.

O. Ishida, “Novel method of estimation flicker frequency noise in lasers,” IEEE Photon. Technol. Lett.2(11), 784–786 (1990).
[CrossRef]

Jiang, S.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

Kikuchi, K.

K. Kikuchi, “Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Krainak, M. A.

Lee, S.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Li, S.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Mehnert, A.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Mollenauer, L. F.

Mols, P.

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Murakami, M.

M. Murakami and S. Saito, “Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems,” IEEE Photon. Technol. Lett.4(11), 1269–1272 (1992).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Nakazawa, M.

A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett.19(19), 1463–1465 (2007).
[CrossRef]

Numata, K.

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Park, N.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett.4(9), 1063–1066 (1992).
[CrossRef]

Saito, S.

M. Murakami and S. Saito, “Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems,” IEEE Photon. Technol. Lett.4(11), 1269–1272 (1992).
[CrossRef]

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

Stolpner, L.

K. Numata, J. Camp, M. A. Krainak, and L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express18(22), 22781–22788 (2010).
[CrossRef] [PubMed]

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Suzuki, A.

A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett.19(19), 1463–1465 (2007).
[CrossRef]

Takahashi, Y.

A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett.19(19), 1463–1465 (2007).
[CrossRef]

Tsuchida, H.

Vahala, K. J.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett.4(9), 1063–1066 (1992).
[CrossRef]

Yoshida, M.

A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett.19(19), 1463–1465 (2007).
[CrossRef]

Electron. Lett.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

IEEE J. Quantum Electron.

K. Kikuchi, “Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Murakami and S. Saito, “Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems,” IEEE Photon. Technol. Lett.4(11), 1269–1272 (1992).
[CrossRef]

O. Ishida, “Novel method of estimation flicker frequency noise in lasers,” IEEE Photon. Technol. Lett.2(11), 784–786 (1990).
[CrossRef]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett.19(19), 1463–1465 (2007).
[CrossRef]

H. Tsuchida, “Characterization of white and flicker frequency modulation noise in narrow-linewidth laser diodes,” IEEE Photon. Technol. Lett.23(11), 727–729 (2011).
[CrossRef]

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photon. Technol. Lett.4(9), 1063–1066 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE7316, 73160X (2009).
[CrossRef]

Other

M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer, 2009), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of laser lineshape measurement apparatus based on the R-DSH method, (b) Electric field components at the HRI output, where n (≥ 2) represents the number of circulations.

Fig. 2
Fig. 2

Beat signal spectra. (a) Conventional R-DSH method. (b) R-DSH method with optical filtering schematically shown in Fig. 3(b). The center frequency, resolution bandwidth, and number of averaging are 100 MHz, 30 Hz, and 64, respectively. Curves A, B, C, D, and E are obtained with the EDFA gain of 1.76, 4.85, 7.01, 8.89, and 10.7 dB, respectively.

Fig. 3
Fig. 3

Schematics of laser lineshape measurements for eliminating the spectrum distortion, which employ (a) Fabry-Perot interferometer and (b) OBPF at the HRI output.

Fig. 4
Fig. 4

Beat signal spectra. (a) Conventional R-DSH method. (b) R-DSH method with optical filtering. The resolution bandwidth and number of averaging are 30 Hz and 64, respectively.

Fig. 5
Fig. 5

3-, 10-, and 20-dB linewidth of the beat signal spectra plotted as function of the delay. Solid lines represent the theoretical results and blue and red circles correspond to the experimental results without and with the use of optical filtering, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S ν (f)= R ν (τ)exp(i2πfτ)dτ = [ ν(t)ν(t+τ)dt ]exp(i2πfτ)dτ .
E out (t)= E 0 exp[i2π ν 0 t+iϕ(t)] + k=1 E k exp[ i2π ν 0 (tk τ d )+i j=1 k 2π f s (tj τ d ) +iϕ(tk τ d ) ],
I DSH (t)=ξ E 0 E n exp{ i[ 2πn f s tn(n+1)πf τ d n2π ν 0 τ d ϕ(t)+ϕ(tn τ d ) ] }+c.c.,
I ˜ DSH (t)=ξ E 0 E n exp{ i[ n2π ν 0 τ d n(n+1)π f s τ d ϕ(t)+ϕ(tn τ d ) ] }.
R DSH (τ)= I ˜ DSH * (t) I ˜ DSH (t+τ)dt = (ξ E 0 E n ) 2 exp[iϕ(tn τ d +τ)iϕ(tn τ d )iϕ(t+τ)+iϕ(t)]dt .
R DSH (τ)=exp{ 2 (πτ) 2 0 S ν (f) sin 2 (πfτ)[1cos(2πf τ d )] (πfτ) 2 df }.
S DSH (f)= R DSH (τ)exp(i2πfτ)dτ .
I ˜ RDSH (t)=ξ E 0 E n exp{ i[ 2π ν 0 n τ d n(n+1)π f s τ d +ϕ(tn τ d )ϕ(t) ] } +ξ E 1 E n+1 exp{ i[ 2π ν 0 n τ d n(n+3)π f s τ d +ϕ{t(n+1) τ d }ϕ(t τ d ) ] },
R R-DSH (τ)= R DSH (τ)+ ( E 1 E n+1 E 0 E n ) 2 R DSH (τ) + E 1 E n+1 E 0 E [ exp(i2nπ f s τ d ) R DSH (τ τ d )+exp(i2nπ f s τ d ) R DSH (τ+ τ d ) ].
S R-DSH (f)={ 1+ ( E 1 E n+1 E 0 E n ) 2 + 2 E 1 E n+1 E 0 E n cos[2π(f+n f s ) τ d ] } S DSH (f).
S ν (f)= ν 0 2 [ h 0 + h 1 /f ],
S RDSH (f)={ 1+ ( E 2 E 0 ) 2 + 2 E 2 E 0 cos(2πf τ d ) } S DSH (f).

Metrics