Abstract

We investigate the spectral linewidth of a monolithic photonic crystal nanocavity laser. The nanocavity laser is based on a buried heterostructure cavity in which an ultra-small InGaAsP active region is embedded in an InP photonic crystal. Although it was difficult to achieve narrow linewidth operation in previously reported photonic crystal nanocavity lasers, we have successfully demonstrated a linewidth of 143.5 MHz, which is far narrower than the cold cavity linewidth and the narrowest value yet reported for nanolasers and photonic crystal lasers. The narrow linewidth is accompanied by a low power consumption and an ultrasmall footprint, thus making this particular laser especially suitable for use as an integrated multi-purpose sensor.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Inoue and K. Ohtaka, eds., Photonic Crystal: Physics, Fabrication and Applications (Springer, 2004).
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  3. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  4. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007).
    [CrossRef] [PubMed]
  5. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron.3(3), 808–830 (1997).
    [CrossRef]
  6. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993), Chap. 6.
  7. P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
    [CrossRef]
  8. R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
    [CrossRef]
  9. N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
    [CrossRef]
  10. M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feeback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29(19), 1696–1697 (1993).
    [CrossRef]
  11. H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
    [CrossRef]
  12. W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
    [CrossRef]
  13. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29(10), 1093–1095 (2004).
    [CrossRef] [PubMed]
  14. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
    [CrossRef] [PubMed]
  15. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
    [CrossRef]
  16. M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
    [CrossRef]
  17. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express14(13), 6308–6315 (2006).
    [CrossRef] [PubMed]
  18. M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
    [CrossRef]
  19. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
    [CrossRef]
  20. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express16(23), 18657–18666 (2008).
    [CrossRef] [PubMed]
  21. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
    [CrossRef]
  22. J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
    [CrossRef]
  23. A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons Inc., New York, 1989), Chap. 9.
  24. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13(5), 430–432 (2001).
    [CrossRef]
  25. J. Kim and P. J. Delfyett, “Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers,” Opt. Express17(25), 22566–22570 (2009).
    [CrossRef] [PubMed]
  26. Y. Yamamoto, ed., Coherence, Amplification, and Quantum Effects in Semiconductor Lasers (John Wiley & Sons, Inc., 1991), Chap. 2.
  27. H. Yasaka, M. Fukuda, and T. Ikegami, “Current tailoring for lowering linewidth floor,” Electron. Lett.24(12), 760–761 (1988).
    [CrossRef]
  28. U. Krüger and K. Petermann, “Dependence of the linewidth of a semiconductor laser on the mode distribution,” IEEE J. Quantum Electron.26(12), 2058–2064 (1990).
    [CrossRef]
  29. G. R. Gray and G. P. Agrawal, “Effect of cross saturation on frequency fluctuations in a nearly single-mode semiconductor laser,” IEEE Photon. Technol. Lett.3(3), 204–206 (1991).
    [CrossRef]
  30. K. Kikuchi, “Effect of 1/f-Type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
    [CrossRef]
  31. M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993).
    [CrossRef]
  32. F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron. Dev.41(11), 1926–1935 (1994).
    [CrossRef]
  33. A. Mutig, High Speed VCSELs for Optical Interconnects (Springer Thesis, 2011), Chap. 2.
  34. J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
    [CrossRef]

2011

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

2010

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

2009

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

J. Kim and P. J. Delfyett, “Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers,” Opt. Express17(25), 22566–22570 (2009).
[CrossRef] [PubMed]

2008

2007

2006

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

2005

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

2004

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29(10), 1093–1095 (2004).
[CrossRef] [PubMed]

2003

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

2001

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13(5), 430–432 (2001).
[CrossRef]

1997

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron.3(3), 808–830 (1997).
[CrossRef]

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

1994

F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron. Dev.41(11), 1926–1935 (1994).
[CrossRef]

1993

M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993).
[CrossRef]

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feeback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29(19), 1696–1697 (1993).
[CrossRef]

1992

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

1991

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

G. R. Gray and G. P. Agrawal, “Effect of cross saturation on frequency fluctuations in a nearly single-mode semiconductor laser,” IEEE Photon. Technol. Lett.3(3), 204–206 (1991).
[CrossRef]

1990

U. Krüger and K. Petermann, “Dependence of the linewidth of a semiconductor laser on the mode distribution,” IEEE J. Quantum Electron.26(12), 2058–2064 (1990).
[CrossRef]

1989

K. Kikuchi, “Effect of 1/f-Type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
[CrossRef]

1988

H. Yasaka, M. Fukuda, and T. Ikegami, “Current tailoring for lowering linewidth floor,” Electron. Lett.24(12), 760–761 (1988).
[CrossRef]

1980

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Abstreiter, G.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Adams, M. L.

M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

Agrawal, G. P.

G. R. Gray and G. P. Agrawal, “Effect of cross saturation on frequency fluctuations in a nearly single-mode semiconductor laser,” IEEE Photon. Technol. Lett.3(3), 204–206 (1991).
[CrossRef]

Alabedra, R.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Amann, M.-C.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Arakawa, Y.

Baba, T.

Babic, D. I.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Bagheri, M.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

Belleville, G.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Bellon, M.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Beylat, J.-L.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Bissessur, H.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Böhm, G.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Bowers, J. E.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Brattain, M. A.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Choi, S. J.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

Chow, E.

Chuang, S. L.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13(5), 430–432 (2001).
[CrossRef]

Dapkus, P. D.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

Delfyett, P. J.

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Dorfner, D.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Duchemin, C.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Emery, J.-Y.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Fernier, B.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Finley, J.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Frandsen, L.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Fukuda, M.

M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993).
[CrossRef]

H. Yasaka, M. Fukuda, and T. Ikegami, “Current tailoring for lowering linewidth floor,” Electron. Lett.24(12), 760–761 (1988).
[CrossRef]

Gaborit, F.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Girolami, G.

Gosalbes, J.-M.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Gray, G. R.

G. R. Gray and G. P. Agrawal, “Effect of cross saturation on frequency fluctuations in a nearly single-mode semiconductor laser,” IEEE Photon. Technol. Lett.3(3), 204–206 (1991).
[CrossRef]

Grot, A.

Halbritter, H.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Hauke, N.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hirono, T.

M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993).
[CrossRef]

Hooge, F. N.

F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron. Dev.41(11), 1926–1935 (1994).
[CrossRef]

Hu, E. L.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Hürlimann, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Ikegami, T.

H. Yasaka, M. Fukuda, and T. Ikegami, “Current tailoring for lowering linewidth floor,” Electron. Lett.24(12), 760–761 (1988).
[CrossRef]

Ishida, S.

Iwamoto, S.

Jacquet, J.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Jin, X.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13(5), 430–432 (2001).
[CrossRef]

Juodawlkis, P. W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

Kano, F.

M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993).
[CrossRef]

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kikuchi, K.

K. Kikuchi, “Effect of 1/f-Type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Kim, J.

Kita, S.

Kitamura, M.

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

Krüger, U.

U. Krüger and K. Petermann, “Dependence of the linewidth of a semiconductor laser on the mode distribution,” IEEE J. Quantum Electron.26(12), 2058–2064 (1990).
[CrossRef]

Kumagai, N.

Kurosaki, T.

M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993).
[CrossRef]

Liu, G.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13(5), 430–432 (2001).
[CrossRef]

Loh, W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Loncar, M.

M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Margalit, N. M.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Marin, F.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Marshall, W. K.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

Matsuo, S.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

Maute, M.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Meissner, P.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Mirin, R. P.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Mirkarimi, L. W.

Missaggia, L. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Murata, S.

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

Myara, M.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Nakata, Y.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Nomura, M.

Notomi, M.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express16(23), 18657–18666 (2008).
[CrossRef] [PubMed]

Nozaki, K.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

O’Brien, J. D.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

O’Donnell, F. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Okai, M.

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feeback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29(19), 1696–1697 (1993).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Orsal, B.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Ortsiefer, M.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Perez, J.-P.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Petermann, K.

U. Krüger and K. Petermann, “Dependence of the linewidth of a semiconductor laser on the mode distribution,” IEEE J. Quantum Electron.26(12), 2058–2064 (1990).
[CrossRef]

Piprek, J.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Plais, A.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Plant, J. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Pommereau, F.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Provost, J.-G.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Qiu, Y.

M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Rant, U.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Riemenschneider, F.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Rosskopf, J.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Sato, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

Scherer, A.

M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

Shau, R.

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Shih, M. H.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

Shimizu, J.

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

Shinya, A.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

Sigalas, M.

Signoret, P.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Starck, C.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

Streubel, K.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Suzuki, A.

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

Suzuki, M.

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feeback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29(19), 1696–1697 (1993).
[CrossRef]

Taniwatari, T.

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feeback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29(19), 1696–1697 (1993).
[CrossRef]

Taniyama, H.

Tomita, A.

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

Tourrenc, J. P.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Tourrenc, J.-P.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Viciani, S.

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

Watanabe, K.

Wei, Z.-J.

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

Wesselmann, J. R.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Yamada, H.

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

Yasaka, H.

H. Yasaka, M. Fukuda, and T. Ikegami, “Current tailoring for lowering linewidth floor,” Electron. Lett.24(12), 760–761 (1988).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Zabel, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Zhang, S.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

Appl. Phys. Lett.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Biosens. Bioelectron.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Electron. Lett.

H. Yasaka, M. Fukuda, and T. Ikegami, “Current tailoring for lowering linewidth floor,” Electron. Lett.24(12), 760–761 (1988).
[CrossRef]

R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003).
[CrossRef]

M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feeback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29(19), 1696–1697 (1993).
[CrossRef]

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

IEEE J. Quantum Electron.

J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

K. Kikuchi, “Effect of 1/f-Type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989).
[CrossRef]

U. Krüger and K. Petermann, “Dependence of the linewidth of a semiconductor laser on the mode distribution,” IEEE J. Quantum Electron.26(12), 2058–2064 (1990).
[CrossRef]

IEEE J. Sel. Areas Comm.

M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997).
[CrossRef]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron.3(3), 808–830 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

G. R. Gray and G. P. Agrawal, “Effect of cross saturation on frequency fluctuations in a nearly single-mode semiconductor laser,” IEEE Photon. Technol. Lett.3(3), 204–206 (1991).
[CrossRef]

P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001).
[CrossRef]

M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993).
[CrossRef]

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13(5), 430–432 (2001).
[CrossRef]

M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006).
[CrossRef]

J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991).
[CrossRef]

IEEE Trans. Electron. Dev.

F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron. Dev.41(11), 1926–1935 (1994).
[CrossRef]

Nat. Photonics

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010).
[CrossRef]

Nature

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

A. Mutig, High Speed VCSELs for Optical Interconnects (Springer Thesis, 2011), Chap. 2.

A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons Inc., New York, 1989), Chap. 9.

Y. Yamamoto, ed., Coherence, Amplification, and Quantum Effects in Semiconductor Lasers (John Wiley & Sons, Inc., 1991), Chap. 2.

K. Inoue and K. Ohtaka, eds., Photonic Crystal: Physics, Fabrication and Applications (Springer, 2004).

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic diagram and simulated magnetic field profile for the BH PhC laser. An ultra-small active region is buried in the line defect waveguide, and the quality factor is controlled by controlling the offset distance from the edge of the output waveguide

Fig. 2
Fig. 2

Optical delayed self-homodyne measurement setup. VOA: variable optical attenuator, I: isolator, BPF: band pass filter.

Fig. 3
Fig. 3

(a) “L-L curve” near threshold. The inset shows the optical spectrum at the threshold. (b) Spectral linewidth versus input power. The input and output powers are estimated powers in the input and output waveguides (WG), respectively.

Fig. 4
Fig. 4

(a) “L-L curve” far above the threshold. (b) Optical spectrum when the input power was over 100 μW in the input waveguide. The inset shows the optical spectrum of the fundamental mode. (c) Spectral linewidth vs. the input power in the input waveguide. (d) Photocurrent spectrum of the narrowest linewidth. The same color of square is used to denote the same input power in “L-L curve” far above threshold, “linewidth vs. input power”, and “photocurrent power spectrum”.

Fig. 5
Fig. 5

Spectral linewidth vs. 1 over the output power in the output waveguide.

Tables (1)

Tables Icon

Table 1 Linewidth and Related Parameters of Monolithic Lasers Emitting at 1.5 μm

Metrics