Abstract

Terahertz chemical microscopy (TCM) was applied to visualize the distribution of the work function shift of catalytic metals under hydrogen gas. TCM measures the chemical potential on the surface of a SiO2/Si/sapphire sensing plate without any contact with the plate. By controlling the bias voltage between an electrode on the SiO2 surface and the Si layer, the relationship between the voltage and the THz amplitude from the sensing plate can be obtained. As a demonstration, two types of structures were fabricated on the sensing plate, and the work function shifts due to catalytic reactions were visualized.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Chemical sensing plate with a laser-terahertz monitoring system

Toshihiko Kiwa, Junichi Kondo, Shohei Oka, Iwao Kawayama, Hironobu Yamada, Masayoshi Tonouchi, and Keiji Tsukada
Appl. Opt. 47(18) 3324-3327 (2008)

Stabilization method for signal drifts in terahertz chemical microscopy

Toshihiko Kiwa, Kenji Sakai, and Keiji Tsukada
Opt. Express 22(2) 1330-1335 (2014)

A novel structure for tunable terahertz absorber based on graphene

Bing-zheng Xu, Chang-qing Gu, Zhuo Li, and Zhen-yi Niu
Opt. Express 21(20) 23803-23811 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
    [Crossref]
  2. T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators, A 136, 244–248 (2007).
  3. T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).
  4. M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).
  5. M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
    [Crossref]
  6. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  7. T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
    [Crossref]
  8. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
    [Crossref] [PubMed]
  9. H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
    [Crossref]
  10. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
    [Crossref] [PubMed]
  11. T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
    [Crossref] [PubMed]
  12. T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
    [Crossref]
  13. T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
    [Crossref]
  14. T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
    [Crossref]
  15. X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
    [Crossref]
  16. K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
    [Crossref]

2012 (1)

K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
[Crossref]

2010 (2)

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

2008 (2)

T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

2007 (4)

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators, A 136, 244–248 (2007).

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

2005 (2)

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[Crossref] [PubMed]

2003 (3)

T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
[Crossref]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[Crossref] [PubMed]

M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).

1991 (1)

M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

1990 (1)

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Auston, D. H.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Burgmair, M.

M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).

Darrow, J. T.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Eisele, I.

M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).

Frerichs, H. P.

M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).

Hu, B. B.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Inoue, H.

K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
[Crossref]

Inoue, R.

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

Kamata, Y.

T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
[Crossref]

Kariya, M.

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

Katayama, F.

K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
[Crossref]

Kawase, K.

Kawayama, I.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

Kim, S.

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

Kiwa, T.

K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
[Crossref]

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators, A 136, 244–248 (2007).

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[Crossref] [PubMed]

T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
[Crossref]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[Crossref] [PubMed]

Kondo, J.

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

Kondo, Y.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

Kunitsugu, S.

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

Lehmann, M.

M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).

Maehara, T.

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

Migitaka, S.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

Minami, Y.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

Misra, M.

T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
[Crossref]

Murakami, H.

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
[Crossref]

Nonnenmacher, M.

M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

Oboyle, M. P.

M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

Oka, S.

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

Otani, C.

Sakai, K.

K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
[Crossref]

Suzuki, M.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

Takisawa, M.

T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).

Tonouchi, M.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[Crossref] [PubMed]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[Crossref] [PubMed]

T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
[Crossref]

Tsukada, K.

K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
[Crossref]

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators, A 136, 244–248 (2007).

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

Uchida, N.

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

Wickramasinghe, H. K.

M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

Yamada, H.

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[Crossref] [PubMed]

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

Yamaguchi, T.

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).

T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators, A 136, 244–248 (2007).

Yamamoto, T.

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

Yamashita, M.

Yokosawa, K.

T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators, A 136, 244–248 (2007).

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

Zhang, X. C.

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Zimmer, M.

M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[Crossref]

X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96(21), 211114 (2010).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

T. Kiwa, Y. Kamata, M. Misra, H. Murakami, and M. Tonouchi, “Backscattered terahertz radiation imaging system to visualize supercurrent distributions,” IEEE Trans. Appl. Supercond. 13(2), 3675–3678 (2003).
[Crossref]

Jpn. J. Appl. Phys. (3)

K. Tsukada, H. Inoue, F. Katayama, K. Sakai, and T. Kiwa, “Changes in work function and electrical resistance of Pt thin films in the presence of hydrogen gas,” Jpn. J. Appl. Phys. 51(1), 015701 (2012).
[Crossref]

T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips,” Jpn. J. Appl. Phys. 46(44), L1052–L1054 (2007).
[Crossref]

K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, and S. Kunitsugu, “Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation,” Jpn. J. Appl. Phys. 49(2), 024206 (2010).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95(8), 1646–1657 (2007).
[Crossref]

Sens. Actuators, A (1)

T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, “Oxygen interference mechanism of platinum-FET hydrogen gas sensor,” Sens. Actuators, A 136, 244–248 (2007).

Sens. Actuators, B (2)

T. Yamaguchi, M. Takisawa, T. Kiwa, H. Yamada, and K. Tsukada, “Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air,” Sens. Actuators, B 133, 538–542 (2008).

M. Burgmair, H. P. Frerichs, M. Zimmer, M. Lehmann, and I. Eisele, “Field effect transducers for work function gas measurements: device improvements and comparison of performance,” Sens. Actuators, B 95, 183–188 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of (a) the sensing plate and (b) its energy band.

Fig. 2
Fig. 2

(a) Schematic of the sensing plate and (b) the THz amplitude as a function of the bias voltage. The solid line shows the spline curve for the eye guide. (Inset is the reduced scale).

Fig. 3
Fig. 3

(a) Schematic of the test sensing plate, (b) TCM image of the test sensing plate in N2 gas, and (c) differential image comparing TCM images obtained under N2 and H2 atmospheres.

Fig. 4
Fig. 4

(a) Schematic of a sensing plate consisting of Pt/Nafion® layers and (b) differential image comparing TCM images obtained in air and in a 1% H2 atmosphere.

Fig. 5
Fig. 5

The TCM image at the boundary between the SiO2 region and the Pt on SiO2 region and its cross-section.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E THz dJ dt = n t ev+ne v t ,

Metrics