Abstract

We report the implementation of the XOR and XNOR operations using an electro-optic directed logic circuit based on two cascaded silicon microring resonators (MRRs), which are both modulated through the plasma dispersion effect. PIN diodes are embedded around the MRRs to achieve the carrier-injection modulation. The inherent resonance wavelength mismatch between the two nominally identical MRRs caused by fabrication errors is compensated by two local microheaters above each MRR through the thermo-optic effect. Two electrical modulating signals applied to the MRRs represent the two operands of the two operations. Simultaneous bitwise XOR and XNOR operations at 100 Mbit/s are demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  3. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
    [CrossRef]
  4. M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  5. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  6. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
    [CrossRef]
  7. D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [CrossRef]
  8. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  9. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  10. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  11. R. Q. Ji, L. Yang, L. Zhang, Y. H. Tian, J. F. Ding, H. T. Chen, Y. Y. Lu, P. Zhou, and W. W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
    [CrossRef] [PubMed]
  12. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  13. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [CrossRef]
  14. S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49(1), 018201 (2010).
    [CrossRef]
  15. S. Lin, Y. Ishikawa, and K. Wada, “Demonstration of optical computing logics based on binary decision diagram,” Opt. Express 20(2), 1378–1384 (2012).
    [CrossRef] [PubMed]
  16. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [CrossRef] [PubMed]
  17. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
    [CrossRef] [PubMed]
  18. H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5(1), 14–20 (2007).
    [CrossRef]
  19. Q. F. Xu and R. A. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
    [CrossRef] [PubMed]
  20. R. Soref, “Reconfigurable integrated optoelectronics,” Adv. Optoelectron. 2011, 627802 (2011).
    [CrossRef]
  21. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
    [CrossRef]
  22. X. Zhang, Y. Wang, J. Q. Sun, D. M. Liu, and D. X. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12(3), 361–366 (2004).
    [CrossRef] [PubMed]
  23. Q. F. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [CrossRef] [PubMed]
  24. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
    [CrossRef] [PubMed]
  25. L. Zhang, R. Q. Ji, Y. H. Tian, L. Yang, P. Zhou, Y. Y. Lu, W. W. Zhu, Y. L. Liu, L. X. Jia, Q. Fang, and M. B. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
    [CrossRef] [PubMed]
  26. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
    [CrossRef]
  27. M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
    [CrossRef] [PubMed]
  28. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
    [CrossRef] [PubMed]
  29. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  30. J. C. Rosenberg, W. M. Green, S. Assefa, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “Low-Power 30 Gbps Silicon Microring Modulator,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB9.
  31. G. L. Li, X. Z. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
    [CrossRef] [PubMed]
  32. X. Xiao, H. Xu, X. Y. Li, Y. T. Hu, K. Xiong, Z. Y. Li, T. Chu, Y. D. Yu, and J. Z. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20(3), 2507–2515 (2012).
    [CrossRef] [PubMed]

2012 (3)

2011 (5)

2010 (9)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49(1), 018201 (2010).
[CrossRef]

L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
[CrossRef] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (4)

2006 (2)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[CrossRef]

2005 (1)

2004 (3)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

X. Zhang, Y. Wang, J. Q. Sun, D. M. Liu, and D. X. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12(3), 361–366 (2004).
[CrossRef] [PubMed]

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

2002 (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

2000 (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Asghari, M.

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Barnett, B. C.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Bergman, K.

Biberman, A.

Block, B. A.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Bowers, J.

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Byun, H.

Cadien, K.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Caulfield, H. J.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5(1), 14–20 (2007).
[CrossRef]

Chen, H. T.

Chen, J.

Chen, L.

Chen, P.

Chu, T.

Cunningham, J. E.

Dahlem, M. S.

DiLello, N. A.

Ding, J. F.

Dong, P.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Fang, Q.

Fathpour, S.

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49(1), 018201 (2010).
[CrossRef]

Feng, D.

Feng, N.-N.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Geis, M. W.

Geng, M. M.

Grein, M. E.

Grover, R.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Hardy, J.

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Holzwarth, C. W.

Hoyt, J. L.

Hu, Y. T.

Huang, D. X.

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Ippen, E. P.

Ishikawa, Y.

Jalali, B.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[CrossRef]

Ji, R. Q.

Jia, L. X.

Jiang, Z. Y.

Johnson, F. G.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Kärtner, F. X.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Khilo, A.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Kobrinsky, M. J.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Krishnamoorthy, A. V.

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Lee, B. G.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Li, G.

Li, G. L.

Li, X. Y.

Li, Z. Y.

Liang, D.

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Liang, H.

Liao, S.

Lin, S.

Lipson, M.

List, S.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Liu, D. M.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Liu, Y. L.

Lu, Y. Y.

Luo, Y.

Lyszczarz, T. M.

Manipatruni, S.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Mohammed, E.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Motamedi, A.

Nejadmalayeri, A. H.

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Orcutt, J. S.

Paniccia, M.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[CrossRef]

Peng, M. Y.

Perrott, M.

Popovic, M. A.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Raj, K.

Ram, R. J.

Reed, G.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[CrossRef]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Reshotko, M.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Riza, N. A.

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49(1), 018201 (2010).
[CrossRef]

Roberston, F.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Sander, M. Y.

Schmidt, B.

Shafiiha, R.

Shakya, J.

Shamir, J.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Sherwood-Droz, N.

Shubin, I.

Smith, H. I.

Sorace-Agaskar, C. M.

Soref, R.

R. Soref, “Reconfigurable integrated optoelectronics,” Adv. Optoelectron. 2011, 627802 (2011).
[CrossRef]

Soref, R. A.

Q. F. Xu and R. A. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
[CrossRef] [PubMed]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5(1), 14–20 (2007).
[CrossRef]

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Spector, S. J.

Sun, J.

Sun, J. Q.

Thacker, H.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Tian, Y. H.

Van, V.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Vikram, C. S.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5(1), 14–20 (2007).
[CrossRef]

Wada, K.

Wang, H.

Wang, J. P.

Wang, T.

Wang, Y.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Xiao, S. J.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Xiao, X.

Xiong, K.

Xu, H.

Xu, Q. F.

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Yang, L.

Yao, J.

Yoon, J. U.

Young, I.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Yu, J. Z.

Yu, M. B.

Yu, Y. D.

Zhang, L.

Zhang, X.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Zheng, J. F.

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Zheng, X.

Zheng, X. Z.

Zhou, G.-R.

Zhou, P.

Zhu, W. W.

Adv. Optoelectron. (1)

R. Soref, “Reconfigurable integrated optoelectronics,” Adv. Optoelectron. 2011, 627802 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Microw. Mag. (1)

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006).
[CrossRef]

Intel Technol. J. (1)

M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberston, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[CrossRef]

Nat. Photonics (5)

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Opt. Eng. (1)

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng. 49(1), 018201 (2010).
[CrossRef]

Opt. Express (14)

X. Zhang, Y. Wang, J. Q. Sun, D. M. Liu, and D. X. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12(3), 361–366 (2004).
[CrossRef] [PubMed]

J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
[CrossRef] [PubMed]

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Q. F. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[CrossRef] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

Q. F. Xu and R. A. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
[CrossRef] [PubMed]

L. Zhang, R. Q. Ji, Y. H. Tian, L. Yang, P. Zhou, Y. Y. Lu, W. W. Zhu, Y. L. Liu, L. X. Jia, Q. Fang, and M. B. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
[CrossRef] [PubMed]

R. Q. Ji, L. Yang, L. Zhang, Y. H. Tian, J. F. Ding, H. T. Chen, Y. Y. Lu, P. Zhou, and W. W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
[CrossRef] [PubMed]

G. L. Li, X. Z. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[CrossRef] [PubMed]

S. Lin, Y. Ishikawa, and K. Wada, “Demonstration of optical computing logics based on binary decision diagram,” Opt. Express 20(2), 1378–1384 (2012).
[CrossRef] [PubMed]

X. Xiao, H. Xu, X. Y. Li, Y. T. Hu, K. Xiong, Z. Y. Li, T. Chu, Y. D. Yu, and J. Z. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20(3), 2507–2515 (2012).
[CrossRef] [PubMed]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photon. Nanostr. Fundam. Appl. (1)

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5(1), 14–20 (2007).
[CrossRef]

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Other (1)

J. C. Rosenberg, W. M. Green, S. Assefa, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “Low-Power 30 Gbps Silicon Microring Modulator,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic and (b) micrograph of the electro-optic XOR/XNOR directed logic circuit based on two cascaded microring resonators (CW: continuous wave, MRR: microring resonator, EPT: electrical pulse train, OPT: optical pulse train).

Fig. 2
Fig. 2

Process flow of the device: (a) and (b) etching of the top Si layer by 150 nm and 70 nm, respectively, (c) and (d) p- and n-doping and through boron and phosphorus implantation, (e) deposition and etching of the TiN layer to form the microheater, (f) and (g) etching of the SiO2 layer to form the via holes to the PIN diodes and microheaters, (h) deposition and etching of the Al layer to form the wires and pads, (i) deep etching to form the end-face of the SSCs.

Fig. 3
Fig. 3

Response spectra obtained at the drop and through ports of the fabricated device with MRR2 being tuned by a heating voltage of 2.92 V to make it resonate at the same wavelengths as MRR1.

Fig. 4
Fig. 4

Response spectra obtained at (a-d) the drop port and (e-h) the through port of the device. Voltages applied to the PIN diodes of MRR1 and MRR2 are both 0 V in (a) and (e), 1 V and 0 V in (b) and (f), 0 V and 1 V in (c) and (g), and both 1 V in (d) and (h). The dashed arrow indicates the location of the working wavelength. MRR2 has a heating voltage of 2.92 V.

Fig. 5
Fig. 5

Signals applied to two MRRs and detected at the through and drop ports in the first operating mode. Signals at 100 Mbit/s applied to (a) MRR1 and (b) MRR2. Results of (c) XOR operation result at the through port and (d) XNOR operation result at the drop port.

Fig. 6
Fig. 6

Response spectra obtained at (a-d) the drop port and (e-h) the through port of the device. Voltages applied to the PIN diodes of MRR1 and MRR2 are both 0 V in (a) and (e), 1 V and 0 V in (b) and (f), 0 V and 1 V in (c) and (g), and both 1 V in (d) and (h). The dashed arrow indicates the location of the working wavelength. MRR2 has a heating voltage of 2.92 V.

Fig. 7
Fig. 7

Signals applied to two MRRs and detected at the through and drop ports in the second operating mode. Signals at 100 Mbit/s applied to (a) MRR1 and (b) MRR2. Results of (c) XOR operation result at the through port and (d) XNOR operation result at the drop port.

Metrics