Abstract

We investigated light absorption in various Si thin film solar absorbers and designed efficient input couplers using finite-difference time-domain simulation. In the simulation, a dielectric coating on Si thin film led to enhanced light absorption at near-ultraviolet to blue wavelengths, while the absorption peaks at longer wavelengths were nearly preserved. In a 300-nm-thick Si film with a 60-nm-thick Si3N4 top-coated layer, current density was augmented by ~35% compared to a bare Si film. For broadband absorption, we introduced two-dimensional square-lattice periodic patterns consisting of low-index dielectric materials, SiO2 or Si3N4, or high-index material, Si. The periodic pattern exhibited tunable and pronounced absorption peaks that are indentified as horizontally-propagating waveguide modes. The high absorption peaks were significantly amplified with increasing refractive index of the dielectric pattern. For a Si-patterned structure with a pitch size of 400 nm and a pattern depth of 80 nm, current density was achieved up to 17.0 mA/cm2, which is enhanced by a factor of 2.1 compared to the current density of bare Si film. Deep understanding of the light absorption in optical cavities with wavelength-scale thickness will be useful in the design of efficient thin film solar absorbers as well as novel nanophotonic elements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Renewables 2011 Global Status Report (Renewable Energy Policy Network, 2011).
  2. D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
    [CrossRef]
  3. L. Fraas and L. Partain, Solar Cells and their Applications 2nd ed. (Wiley Series in Microwave and Optical Engineering, 2010), Chap. 2.
  4. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
    [CrossRef] [PubMed]
  5. R. H. Hopkins and A. Rohatgi, “Impurity effects in silicon for high efficiency solar cells,” J. Cryst. Growth75(1), 67–79 (1986).
    [CrossRef]
  6. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
    [CrossRef]
  7. J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
    [CrossRef]
  8. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express20(S4Suppl 4), A465–A475 (2012).
    [CrossRef] [PubMed]
  9. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express20(S5Suppl 5), A560–A571 (2012).
    [CrossRef] [PubMed]
  10. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric Nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011).
    [CrossRef] [PubMed]
  11. L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
    [CrossRef]
  12. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012).
    [CrossRef] [PubMed]
  13. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
    [CrossRef]
  14. F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
    [CrossRef]
  15. J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
    [CrossRef]
  16. N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
    [CrossRef] [PubMed]
  17. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
    [CrossRef]
  18. S.-K. Kim, H.-S. Ee, K.-D. Song, and H.-G. Park, “Design of out-coupling structures with metal-dielectric surface relief,” Opt. Express20(15), 17230–17236 (2012).
    [CrossRef]
  19. A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B93(1), 139–143 (2008).
    [CrossRef]
  20. D. R. Lide, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data (CRC Press, 2008).
  21. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
    [CrossRef] [PubMed]
  22. T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
    [CrossRef] [PubMed]
  23. S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
    [CrossRef] [PubMed]
  24. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  25. S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
    [CrossRef]
  26. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  27. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]

2012 (10)

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012).
[CrossRef] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[CrossRef] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express20(S4Suppl 4), A465–A475 (2012).
[CrossRef] [PubMed]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express20(S5Suppl 5), A560–A571 (2012).
[CrossRef] [PubMed]

S.-K. Kim, H.-S. Ee, K.-D. Song, and H.-G. Park, “Design of out-coupling structures with metal-dielectric surface relief,” Opt. Express20(15), 17230–17236 (2012).
[CrossRef]

2011 (5)

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric Nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

2010 (2)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

2009 (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

2008 (4)

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B93(1), 139–143 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

2007 (1)

N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
[CrossRef] [PubMed]

1986 (1)

R. H. Hopkins and A. Rohatgi, “Impurity effects in silicon for high efficiency solar cells,” J. Cryst. Growth75(1), 67–79 (1986).
[CrossRef]

Alivisatos, A. P.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric Nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Bae, D. K.

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Bell, D. C.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Buonassisi, T.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

Cahoon, J. F.

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric Nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Cao, L.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

Cho, H. K.

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

Choi, B.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Choi, H. J.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

Choi, P.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Day, R. W.

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

DeHart, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Depauw, V.

Dross, F.

Drouard, E.

Ee, H.-S.

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

El Daif, O.

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Fave, A.

Ferry, V. E.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Gomard, G.

Gong, D.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Gordon, I.

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric Nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Hopkins, R. H.

R. H. Hopkins and A. Rohatgi, “Impurity effects in silicon for high efficiency solar cells,” J. Cryst. Growth75(1), 67–79 (1986).
[CrossRef]

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hu, B.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

Hu, Y.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

Jamois, C.

Ju, M.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Kempa, T. J.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

Kim, K.-R.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Kim, S.-K.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

S.-K. Kim, H.-S. Ee, K.-D. Song, and H.-G. Park, “Design of out-coupling structures with metal-dielectric surface relief,” Opt. Express20(15), 17230–17236 (2012).
[CrossRef]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

Ko, J.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Laroche, T.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B93(1), 139–143 (2008).
[CrossRef]

Lee, J. S.

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

Lee, K.-S.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Lee, S.-T.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

Lee, Y.-H.

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

Lewis, N. S.

N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
[CrossRef] [PubMed]

Li, J.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

Li, J. S.

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

Li, L.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

Li, Y. L.

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

Lieber, C. M.

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Meng, X.

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric Nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Needleman, D. B.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Park, H.-G.

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

S.-K. Kim, H.-S. Ee, K.-D. Song, and H.-G. Park, “Design of out-coupling structures with metal-dielectric surface relief,” Opt. Express20(15), 17230–17236 (2012).
[CrossRef]

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

Peng, K.-Q.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

Peretti, R.

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Pillai, K.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[CrossRef] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012).
[CrossRef] [PubMed]

Powell, D. M.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Repins, I.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Rohatgi, A.

R. H. Hopkins and A. Rohatgi, “Impurity effects in silicon for high efficiency solar cells,” J. Cryst. Growth75(1), 67–79 (1986).
[CrossRef]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

Seassal, C.

Simmons, C. B.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

Song, K.-D.

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

S.-K. Kim, H.-S. Ee, K.-D. Song, and H.-G. Park, “Design of out-coupling structures with metal-dielectric surface relief,” Opt. Express20(15), 17230–17236 (2012).
[CrossRef]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012).
[CrossRef] [PubMed]

Sun, X. W.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Trompoukis, C.

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012).
[CrossRef] [PubMed]

Vial, A.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B93(1), 139–143 (2008).
[CrossRef]

Wang, F.

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

Wang, X.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Winkler, M. T.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

Wong, S.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

Wong, S. M.

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

Wu, X.-L.

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

Yang, M. F.

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

Yi, J.

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Yu, H.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

Yu, H. Y.

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

Yu, Y.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Yu, Z.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Zheng, H.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric Nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Appl. Phys. B (1)

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B93(1), 139–143 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011).
[CrossRef]

L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008).
[CrossRef]

S.-K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett.92(24), 241118 (2008).
[CrossRef]

Energy Environ. Sci. (1)

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energy Environ. Sci.5(3), 5874–5883 (2012).
[CrossRef]

J. Appl. Phys. (1)

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011).
[CrossRef]

J. Cryst. Growth (1)

R. H. Hopkins and A. Rohatgi, “Impurity effects in silicon for high efficiency solar cells,” J. Cryst. Growth75(1), 67–79 (1986).
[CrossRef]

Nano Lett. (4)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett.12(9), 4971–4976 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[CrossRef] [PubMed]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A.109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovolt. Res. Appl.16(3), 235–239 (2008).
[CrossRef]

Science (1)

N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
[CrossRef] [PubMed]

Thin Solid Films (1)

J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011).
[CrossRef]

Other (3)

Renewables 2011 Global Status Report (Renewable Energy Policy Network, 2011).

L. Fraas and L. Partain, Solar Cells and their Applications 2nd ed. (Wiley Series in Microwave and Optical Engineering, 2010), Chap. 2.

D. R. Lide, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data (CRC Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(A) Schematic illustrations of a wafer-thick p/n Si photovoltaic device (top) and a p/n thin film Si photovoltaic device with a reflecting substrate (bottom). Red, blue and gray represent n-type Si, p-type Si and a reflecting substrate, respectively. In simulation, we treated n-type Si and p-type Si as a single optical layer. (B) Absorption spectra of the 300-nm-thick Si thin film absorbers with a quartz substrate (solid blue) and a perfect absorber (solid black). Inset, absorption mode profiles calculated in the peaks i, ii and iii of the absorption spectrum (solid blue). (C) Absorption spectra of a 300-nm-thick Si thin film absorber with no dielectric coating layer (dashed green) and with a 20-nm-thick (solid pink) and a 40-nm-thick Si3N4 coating layers (solid brown). Inset, schematic of the calculated structure. (D) Current density of the Si thin film absorber shown in the inset of (C), calculated as a function of the thickness of a Si3N4 coating layer.

Fig. 2
Fig. 2

(A) Schematic illustration of a Si thin film with a 2-D patterned structure on the top. (B) Absorption spectra of a 300-nm-thick Si thin film absorber with a patterned SiO2 (solid blue) or Si3N4 layers (solid pink). The thickness of both dielectric layers is 200 nm and the pitch size of the pattern is 400 nm. (C) Absorption mode profiles at λ = 460, 505, 575, 700 nm (left to right) in the absorption spectrum of the Si3N4-patterend Si film structure. (D) Absorption mode profiles at λ = 525, 665, 825, 950 nm (left to right) in the absorption spectrum of the Si3N4-patterened Si film structure.

Fig. 3
Fig. 3

(A) Absorption spectra of a Si3N4-patterend Si thin film absorber with a pitch size of 380 nm (solid black) and 420 nm (solid red). The thickness of the Si absorber is 300 nm. The solar irradiance spectrum (dashed green) is also plotted. (B) Calculated current density of the Si3N4-patterned Si film structure as a function of the pitch size of the pattern.

Fig. 4
Fig. 4

(A) Schematic illustration of a Si-patterned thin film absorber. (B) Absorption spectra of a Si-patterned thin film absorber with a pattern depth of 20 nm (solid black) and 80 nm (solid purple). The total thickness of the Si film is 300 nm and the pitch size of the pattern is 400 nm. Right, absorption mode profiles of the peaks at λ = 670 nm (top), 740 nm (bottom), marked by * in the absorption spectra of the structure with a pattern depth of 20 nm and 80 nm, respectively. (C) Calculated current densities of the Si-patterned thin film absorbers with a Si thickness of 300 nm (solid blue) and 600 nm (solid red) as a function of Si pattern depth. (D) Absorption spectra of the Si-patterned thin film absorber with (solid orange) and without (solid purple) a conformal 20-nm-thick Si3N4 coating layer. The pattern depth in Si is 100 nm. Inset, schematic of the calculated structure.

Metrics