Abstract

Pulsed laser ablation is increasingly being applied to locally open the rear dielectric layer of advanced silicon wafer solar cell structures, such as aluminum local back surface field solar cells. We report that the laser ablation process on the rear surface of the solar cell at a relatively low laser fluence can cause undesirable spallation at the front surface which is textured with random upright pyramids. This phenomenon is attributed to the enhancement of the surface spallation effect by up to 3 times due to the confinement of the pressure waves at the tips of these random pyramids. Laser ablation at different laser focus positions and laser fluences is carried out to achieve optimized laser processing of the solar cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Knobloch, A. Aberle, and B. Voss, “Cost effective processes for silicon solar cells with high performance,” in Proceedings of 9th EU PVSEC, Freiburg, Germany (1989), pp.777–780.
  2. T. Roder, P. Grabitz, S. Eisele, C. Wagner, J. R. Kohler, and J. H. Werner, “0.4% absolute efficiency gain of industrial solar cells by laser doped selective emitter,” in Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC), PA, USA, (2009), pp. 871–873.
  3. T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
    [CrossRef]
  4. E. V. Kerschaver and G. Beaucarne, “Back-contact solar cells: a review,” Prog. Photovolt. Res. Appl.14(2), 107–123 (2006).
    [CrossRef]
  5. P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
    [CrossRef]
  6. S. Baumann, D. Kray, K. Mayer, A. Eyer, and G. P. Willeke, “Comparative study of laser induced damage in silicon wafers,” in Proceedings of 4th IEEE World Conference on the Photovoltaic Energy Conversion, Hawaii, USA, (2006), pp. 1142–1145.
  7. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
    [CrossRef] [PubMed]
  8. X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
    [CrossRef]
  9. Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
    [CrossRef]
  10. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001).
    [CrossRef]
  11. S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett.79(9), 1396–1398 (2001).
    [CrossRef]
  12. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
    [CrossRef]
  13. N. C. Anderholm, “Laser generated stress waves,” Appl. Phys. Lett.16(3), 113–115 (1970).
    [CrossRef]
  14. M. Boustie, L. Berthe, T. Resseguier, and M. Arrigoni, “Laser shock waves: fundamentals and applications,” in Proceedings of 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications. Montreal, Canada, (2008), pp. 32–40.
  15. L. V. Zhigilei, Z. B. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
    [CrossRef]
  16. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
    [CrossRef]
  17. A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987).
    [CrossRef]
  18. J. Ren, S. S. Orlov, and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys.97(10), 104304 (2005).
    [CrossRef]

2010

T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
[CrossRef]

2009

L. V. Zhigilei, Z. B. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

2007

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

2006

E. V. Kerschaver and G. Beaucarne, “Back-contact solar cells: a review,” Prog. Photovolt. Res. Appl.14(2), 107–123 (2006).
[CrossRef]

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

2005

J. Ren, S. S. Orlov, and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys.97(10), 104304 (2005).
[CrossRef]

2003

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

2001

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett.79(9), 1396–1398 (2001).
[CrossRef]

1996

Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
[CrossRef]

1995

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

1988

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

1987

A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987).
[CrossRef]

1970

N. C. Anderholm, “Laser generated stress waves,” Appl. Phys. Lett.16(3), 113–115 (1970).
[CrossRef]

Anderholm, N. C.

N. C. Anderholm, “Laser generated stress waves,” Appl. Phys. Lett.16(3), 113–115 (1970).
[CrossRef]

Anderson, G. K.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Beaucarne, G.

E. V. Kerschaver and G. Beaucarne, “Back-contact solar cells: a review,” Prog. Photovolt. Res. Appl.14(2), 107–123 (2006).
[CrossRef]

Biro, D.

T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
[CrossRef]

Brendel, R.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Chen, X. Y.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001).
[CrossRef]

Chua, S. J.

Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
[CrossRef]

Clement, F.

T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
[CrossRef]

Corlis, X. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Dyer, P. E.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

Engelhart, P.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Fellmeth, T.

T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
[CrossRef]

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Greif, R.

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

Grischke, R.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Harrison, R. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Haynes, L. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Hermann, S.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Hesselink, L.

J. Ren, S. S. Orlov, and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys.97(10), 104304 (2005).
[CrossRef]

Hong, M. H.

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett.79(9), 1396–1398 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001).
[CrossRef]

Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
[CrossRef]

Ivanov, D. S.

L. V. Zhigilei, Z. B. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Kerschaver, E. V.

E. V. Kerschaver and G. Beaucarne, “Back-contact solar cells: a review,” Prog. Photovolt. Res. Appl.14(2), 107–123 (2006).
[CrossRef]

King, T. R.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Klug, U.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Lin, Z. B.

L. V. Zhigilei, Z. B. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

Low, T. S.

Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
[CrossRef]

Lu, Y. F.

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett.79(9), 1396–1398 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001).
[CrossRef]

Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
[CrossRef]

Mao, S. S.

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

Mao, X. L.

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

Menkoe, M.

T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
[CrossRef]

Meyer, R.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Nagel, D. J.

A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987).
[CrossRef]

Neubert, T.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Orlov, S. S.

J. Ren, S. S. Orlov, and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys.97(10), 104304 (2005).
[CrossRef]

Osborne, W. Z.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Paltauf, G.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

Phipps, C. R.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Plagwitz, H.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Preu, R.

T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
[CrossRef]

Qadri, S. B.

A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987).
[CrossRef]

Ren, J.

J. Ren, S. S. Orlov, and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys.97(10), 104304 (2005).
[CrossRef]

Russo, R. E.

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

Schoonderbeek, A.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Skelton, E. F.

A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987).
[CrossRef]

Spicochi, K. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Steele, H. S.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Stute, U.

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Teo, B. S.

Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
[CrossRef]

Turner, T. P.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Webb, A. W.

A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987).
[CrossRef]

Wen, S. B.

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

York, G. W.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

Zeng, X. Z.

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

Zhigilei, L. V.

L. V. Zhigilei, Z. B. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

Zhu, S.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001).
[CrossRef]

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett.79(9), 1396–1398 (2001).
[CrossRef]

Appl. Phys. Lett.

X. Z. Zeng, X. L. Mao, S. S. Mao, S. B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502 (2006).
[CrossRef]

S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett.79(9), 1396–1398 (2001).
[CrossRef]

N. C. Anderholm, “Laser generated stress waves,” Appl. Phys. Lett.16(3), 113–115 (1970).
[CrossRef]

Chem. Rev.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

Y. F. Lu, M. H. Hong, S. J. Chua, B. S. Teo, and T. S. Low, “Audible acoustic wave emission in excimer laser interaction with materials,” J. Appl. Phys.79(5), 2186–2191 (1996).
[CrossRef]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys.89(4), 2400–2403 (2001).
[CrossRef]

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single pulse lasers,” J. Appl. Phys.64(3), 1083–1096 (1988).
[CrossRef]

A. W. Webb, E. F. Skelton, D. J. Nagel, and S. B. Qadri, “Effects of laser-driven shocks on silicon single crystals,” J. Appl. Phys.61(3), 1155–1161 (1987).
[CrossRef]

J. Ren, S. S. Orlov, and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys.97(10), 104304 (2005).
[CrossRef]

J. Phys. Chem. C

L. V. Zhigilei, Z. B. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C113(27), 11892–11906 (2009).
[CrossRef]

Prog. Photovolt. Res. Appl.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

E. V. Kerschaver and G. Beaucarne, “Back-contact solar cells: a review,” Prog. Photovolt. Res. Appl.14(2), 107–123 (2006).
[CrossRef]

P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, and R. Brendel, “Laser ablation of SiO2 for locally contacted Si solar cells with ultra-short pulses,” Prog. Photovolt. Res. Appl.15(6), 521–527 (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells

T. Fellmeth, M. Menkoe, F. Clement, D. Biro, and R. Preu, “Highly efficient industrially feasible metal wrap through (MWT) silicon solar cells,” Sol. Energy Mater. Sol. Cells94(12), 1996–2001 (2010).
[CrossRef]

Other

S. Baumann, D. Kray, K. Mayer, A. Eyer, and G. P. Willeke, “Comparative study of laser induced damage in silicon wafers,” in Proceedings of 4th IEEE World Conference on the Photovoltaic Energy Conversion, Hawaii, USA, (2006), pp. 1142–1145.

J. Knobloch, A. Aberle, and B. Voss, “Cost effective processes for silicon solar cells with high performance,” in Proceedings of 9th EU PVSEC, Freiburg, Germany (1989), pp.777–780.

T. Roder, P. Grabitz, S. Eisele, C. Wagner, J. R. Kohler, and J. H. Werner, “0.4% absolute efficiency gain of industrial solar cells by laser doped selective emitter,” in Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC), PA, USA, (2009), pp. 871–873.

M. Boustie, L. Berthe, T. Resseguier, and M. Arrigoni, “Laser shock waves: fundamentals and applications,” in Proceedings of 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications. Montreal, Canada, (2008), pp. 32–40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic drawing of the pyramid-enhanced laser induced “rear surface spallation effect” at the front surface of the solar cell; (b) SEM image (tilted view) of the pyramid-textured front surface of the solar cell wafer, clearly revealing damaged pyramid tips due to the laser treatment of the rear surface.

Fig. 2
Fig. 2

(a) Planar-view SEM image of the front surface of a solar cell sample after dielectric ablation at the rear surface with the laser focused at the rear surface; (b)-(d) SEM images of the front surface of samples that were rear surface ablated with the laser beam (b) focused at the rear surface, (c) focused at 3 mm above the rear surface, and (d) focused at 3 mm below the rear surface. Image (a) was taken in the SE mode, while images (b)-(d) were taken in the BSE mode of the SEM system. To show the effect more clearly, the rear surfaces were ablated three times.

Fig. 3
Fig. 3

Relative spallation area as a function of the laser fluence. The ps laser beam operated at a wavelength of 532 nm and a pulse duration of ~10 ps was focused at the sample surface.

Tables (1)

Tables Icon

Table 1 One-sun I-V parameters of the solar cells fabricated below and above the rear surface spallation threshold.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

max{ τ p , τ eph } τ s L C / C S ,
P max = Z E 0 / 3 τ p ,

Metrics