Abstract

We present a proof of principle demonstration of a reversible in-plane actuator activated by focused sunlight, and describe a concept for its use as a self-tracking mechanism in a planar solar concentrator. By actuating at the location of focused sunlight and splitting the solar spectrum for actuation energy, this phase change device aims to provide the adaptive mechanism necessary to efficiently couple concentrated solar light from a lens into a planar lightguide in a manner that is insensitive to incidence angle. As a preliminary demonstration we present a planar actuator array capable of in-plane deflections of >50μm when illuminated with focused light from a solar simulator and demonstrate solar light activated frustrated total internal reflection (FTIR) with the actuator array. We further propose how this solar induced FTIR effect can be modified using a dichroic facet array to self-adaptively couple and concentrate solar light into a planar lightguide.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kurtz, “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” Tech. Rep. NREL/TP-5200–43208, National Renewable Energy Laboratory (2011).
  2. A. Rabl, Active Solar Collectors and Their Applications (Oxford University, 1985).
  3. R. Winston and W. Zhang, “Pushing concentration of stationary solar concentrators to the limit,” Opt. Express18(S1), A64–A72 (2010).
    [CrossRef]
  4. M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy77(3), 269–280 (2004).
    [CrossRef]
  5. http://www.zomeworks.com/photovoltaic-tracking-racks/ , accessed 6/12/2012.
  6. W. Sweatt, G. Nielson, and M. Okandan, “Concentrating photovoltaic systems using micro-optics,” in Renewable Energy and the Environment, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SRWC6.
  7. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt.51(25), 6117–6124 (2012).
    [CrossRef] [PubMed]
  8. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express19(S3Suppl 3), A207–A218 (2011).
    [CrossRef] [PubMed]
  9. K. A. Baker, J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Reactive self-tracking solar concentrators: concept, design, and initial materials characterization,” Appl. Opt.51(8), 1086–1094 (2012).
    [CrossRef] [PubMed]
  10. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express18(2), 1122–1133 (2010).
    [CrossRef] [PubMed]
  11. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express19(S4Suppl 4), A673–A685 (2011).
    [CrossRef] [PubMed]
  12. W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators - a review of recent results,” Opt. Express16(26), 21773–21792 (2008).
    [CrossRef] [PubMed]
  13. P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston, 29 Nov. – 3 Dec. 2010.
  14. P. Kozodoy, “Light-tracking optical device and application to light concentration,” US patent application no. 13/215,271 (2011).
  15. E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst.11(3), 165–174 (2002).
    [CrossRef]
  16. H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng.20(8), 085039 (2010).
    [CrossRef]
  17. P. Dubois, E. Vela, S. Koster, D. Briand, H. R. Shea, and N.-F. de Rooij, “Paraffin-PDMS composite thermo microactuator with large vertical displacement capability,” in Proc. 10th Int. Conf. New Actuators, Bremen, Germany, 215–218 (2006).
  18. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).
  19. http://mathworld.wolfram.com/ConicalFrustum.html , accessed 10/16/2012.
  20. http://solutions.3m.com/wps/portal/3M/en_US/Renewable/Energy/Product/Films/Cool_Mirror/ , accessed 10/16/2012.
  21. T. J. Hebrink, “Durable Polymeric Films for Increasing the Performance of Concentrators,” in Third Generation Photovoltaics, Vasilis Fthenakis ed. (InTech, 2012), pp. 183–200.

2012

2011

2010

2009

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).

2008

2004

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy77(3), 269–280 (2004).
[CrossRef]

2002

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst.11(3), 165–174 (2002).
[CrossRef]

Baker, K. A.

Barnham, K. W. J.

Bende, E. E.

Bose, R.

Büchtemann, A.

Budel, T.

Burgers, A. R.

Carlen, E. T.

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst.11(3), 165–174 (2002).
[CrossRef]

Chatten, A. J.

Clifford, M. J.

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy77(3), 269–280 (2004).
[CrossRef]

Donegá, C. D. M.

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).

Duerr, F.

Eastwood, D.

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy77(3), 269–280 (2004).
[CrossRef]

Farrell, D. J.

Ford, J. E.

Gale, B. K.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng.20(8), 085039 (2010).
[CrossRef]

Hallas, J. M.

Ho, T.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng.20(8), 085039 (2010).
[CrossRef]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).

Karp, J. H.

Kennedy, M.

Koole, R.

Mastrangelo, C. H.

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst.11(3), 165–174 (2002).
[CrossRef]

McCormack, S. J.

Meijerink, A.

Meuret, Y.

Meyer, A.

Meyer, T.

Quilitz, J.

Sant, H. J.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng.20(8), 085039 (2010).
[CrossRef]

Sark, W. G. J. H. M.

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).

Slooff, L. H.

Thienpont, H.

Tremblay, E. J.

Vanmaekelbergh, D.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).

Winston, R.

Zhang, W.

Appl. Opt.

J. Microelectromech. Syst.

E. T. Carlen and C. H. Mastrangelo, “Electrothermally activated paraffin microactuators,” J. Microelectromech. Syst.11(3), 165–174 (2002).
[CrossRef]

J. Micromech. Microeng.

H. J. Sant, T. Ho, and B. K. Gale, “An in situ heater for a phase-change-material-based actuation system,” J. Micromech. Microeng.20(8), 085039 (2010).
[CrossRef]

Opt. Express

Sensor. Actuat. A-Phys.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensor. Actuat. A-Phys.151, 95–99 (2009).

Sol. Energy

M. J. Clifford and D. Eastwood, “Design of a novel passive tracker,” Sol. Energy77(3), 269–280 (2004).
[CrossRef]

Other

http://www.zomeworks.com/photovoltaic-tracking-racks/ , accessed 6/12/2012.

W. Sweatt, G. Nielson, and M. Okandan, “Concentrating photovoltaic systems using micro-optics,” in Renewable Energy and the Environment, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SRWC6.

S. Kurtz, “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” Tech. Rep. NREL/TP-5200–43208, National Renewable Energy Laboratory (2011).

A. Rabl, Active Solar Collectors and Their Applications (Oxford University, 1985).

P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston, 29 Nov. – 3 Dec. 2010.

P. Kozodoy, “Light-tracking optical device and application to light concentration,” US patent application no. 13/215,271 (2011).

http://mathworld.wolfram.com/ConicalFrustum.html , accessed 10/16/2012.

http://solutions.3m.com/wps/portal/3M/en_US/Renewable/Energy/Product/Films/Cool_Mirror/ , accessed 10/16/2012.

T. J. Hebrink, “Durable Polymeric Films for Increasing the Performance of Concentrators,” in Third Generation Photovoltaics, Vasilis Fthenakis ed. (InTech, 2012), pp. 183–200.

P. Dubois, E. Vela, S. Koster, D. Briand, H. R. Shea, and N.-F. de Rooij, “Paraffin-PDMS composite thermo microactuator with large vertical displacement capability,” in Proc. 10th Int. Conf. New Actuators, Bremen, Germany, 215–218 (2006).

Supplementary Material (2)

» Media 1: AVI (4711 KB)     
» Media 2: AVI (4272 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics