Abstract

In this paper, we examine photoluminescence spectra of Cu(In,Ga)Se2 (CIGS) via temperature-dependent and power-dependent photoluminescence (PL). Donor-acceptor pair (DAP) transition, near-band-edge transition were identified by their activation energies. S-shaped displacement of peak position was observed and was attributed to carrier confinement caused by potential fluctuation. This coincides well with the obtained activation energy at low temperature. We also present a model for transition from VSe to VIn and to VCu which illustrates competing mechanisms between DAPs recombinations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
    [CrossRef]
  2. S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998).
    [CrossRef]
  3. S. C. Chen, Y. K. Liao, H. J. Chen, C. H. Chen, C. H. Lai, Y. L. Chueh, H. C. Kuo, K. H. Wu, J. Y. Juang, S. J. Cheng, T. P. Hsieh, and T. Kobayashi, “Ultrafast carrier dynamics in Cu(In,Ga)Se2 thin films probed by femtosecond pump-probe spectroscopy,” Opt. Express 20(12), 12675–12681 (2012).
    [CrossRef]
  4. S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009).
    [CrossRef]
  5. S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
    [CrossRef]
  6. M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
    [CrossRef]
  7. K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
    [CrossRef]
  8. T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
    [CrossRef]
  9. N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
    [CrossRef]
  10. K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
    [CrossRef]
  11. S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(5), 1059–1062 (2009).
    [CrossRef]
  12. M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
    [CrossRef]
  13. B. M. Keyes, P. Dippo, W. Metzger, J. AbuShama, and R. Noufi, “Cu(In,Ga)Se2 thin films evolution during growth – a photoluminescence study,” Proceeding of the 29th IEEE Phot. Spec. Conf., 511–514 (2002).
  14. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [CrossRef]
  15. E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
    [CrossRef]
  16. M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
    [CrossRef]
  17. J. Mattheis, U. Rau, and J. H. Werner, “Light absorption and emission in semiconductors with band gap fluctuations-A study on Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 101(11), 113519 (2007).
    [CrossRef]
  18. S. Siebentritt, “What limits the efficiency of chalcopyrite solar cells?” Sol. Energy Sol. Cells. 95(6), 1471–1476 (2011).
    [CrossRef]
  19. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
    [CrossRef]
  20. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
    [CrossRef]
  21. A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
    [CrossRef]
  22. T. Yamaguchi, J. Matsufusa, and A. Yoshida, “Optical properties in RF sputtered CuInxGa1−xSe2 thin films,” Appl. Surf. Sci. 70-71, 669–674 (1993).
    [CrossRef]
  23. K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
    [CrossRef]
  24. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
    [CrossRef]
  25. K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
    [CrossRef]
  26. I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
    [CrossRef]
  27. A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
    [CrossRef]
  28. J. H. Schon and E. Bucher, “Comparison of point defects in CuInSe2 and CuGaSe2 single crystals,” Sol. Energy Mater. Sol. Cells 57(3), 229–237 (1999).
    [CrossRef]
  29. D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of radiative recombination at randomly distributed donors and acceptors,” Phys. Rev. 140(1A), A202–A220 (1965).
    [CrossRef]
  30. U. Rau, “Tunneling-enhanced recombination in CuInGaSe2 heterojunction solar cells,” Appl. Phys. Lett. 74(1), 111–113 (1999).
    [CrossRef]
  31. U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

2012 (1)

2011 (4)

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
[CrossRef]

M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
[CrossRef]

S. Siebentritt, “What limits the efficiency of chalcopyrite solar cells?” Sol. Energy Sol. Cells. 95(6), 1471–1476 (2011).
[CrossRef]

2010 (1)

S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
[CrossRef]

2009 (2)

S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009).
[CrossRef]

S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(5), 1059–1062 (2009).
[CrossRef]

2007 (1)

J. Mattheis, U. Rau, and J. H. Werner, “Light absorption and emission in semiconductors with band gap fluctuations-A study on Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 101(11), 113519 (2007).
[CrossRef]

2006 (1)

E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
[CrossRef]

2005 (1)

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

2004 (1)

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

2003 (2)

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

2002 (1)

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

2000 (1)

U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

1999 (5)

U. Rau, “Tunneling-enhanced recombination in CuInGaSe2 heterojunction solar cells,” Appl. Phys. Lett. 74(1), 111–113 (1999).
[CrossRef]

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

J. H. Schon and E. Bucher, “Comparison of point defects in CuInSe2 and CuGaSe2 single crystals,” Sol. Energy Mater. Sol. Cells 57(3), 229–237 (1999).
[CrossRef]

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

1998 (3)

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998).
[CrossRef]

1997 (2)

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

1994 (1)

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

1993 (1)

T. Yamaguchi, J. Matsufusa, and A. Yoshida, “Optical properties in RF sputtered CuInxGa1−xSe2 thin films,” Appl. Surf. Sci. 70-71, 669–674 (1993).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

1965 (1)

D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of radiative recombination at randomly distributed donors and acceptors,” Phys. Rev. 140(1A), A202–A220 (1965).
[CrossRef]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Ahn, S.

S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
[CrossRef]

Albert, J.

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Al-Jassin, M. M.

M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
[CrossRef]

Asher, S.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

Asif Khan, M.

E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
[CrossRef]

Augustyniak, W. M.

D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of radiative recombination at randomly distributed donors and acceptors,” Phys. Rev. 140(1A), A202–A220 (1965).
[CrossRef]

Beaumont, B.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Bell, A.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Bräunig, D.

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

Bruns, J.

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

Bucher, E.

J. H. Schon and E. Bucher, “Comparison of point defects in CuInSe2 and CuGaSe2 single crystals,” Sol. Energy Mater. Sol. Cells 57(3), 229–237 (1999).
[CrossRef]

Chang, J. C.

T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
[CrossRef]

Chen, C. H.

Chen, H. J.

Chen, S. C.

Chen, W. C.

T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
[CrossRef]

Cheng, S. J.

Cho, Y. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Christen, J.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Chuang, C. C.

T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
[CrossRef]

Chueh, Y. L.

Contreras, M. A.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

DenBaars, S. P.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Dirnstorfer, I.

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Du, H.

M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
[CrossRef]

Duda, A.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Engelhardt, F.

U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

Fischer, A. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Fons, P. J.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Fujioka, A.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Fukuyama, A.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Gabor, A. M.

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

Gainer, G. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Gibart, P.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Grandjean, N.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Gremenok, V. F.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Guo, J. W.

T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
[CrossRef]

Gwak, J.

S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
[CrossRef]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Hariskos, D.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Hasoon, F. S.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Hofmann, D. M.

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Hopfield, J. J.

D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of radiative recombination at randomly distributed donors and acceptors,” Phys. Rev. 140(1A), A202–A220 (1965).
[CrossRef]

Hsieh, T. P.

Ikari, T.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Ishii, Y.

S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009).
[CrossRef]

Jackson, P.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Jasenek, A.

U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

Juang, J. Y.

Jung, S. I.

S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
[CrossRef]

Karg, F.

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Katayama-Yoshida, H.

S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998).
[CrossRef]

Keane, J.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Keller, S.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Kniese, R.

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Kobayashi, T.

Kovalevski, V. I.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Kuo, H. C.

Kuokstis, E.

E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
[CrossRef]

Kurdesov, F. V.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Lai, C. H.

Lampert, M. D.

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Leroux, M.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Liao, Y. K.

Lotter, E.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Lux-Steiner, M. Ch.

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Maeda, K.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Martin, R. W.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Massies, J.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Matsufusa, J.

T. Yamaguchi, J. Matsufusa, and A. Yoshida, “Optical properties in RF sputtered CuInxGa1−xSe2 thin films,” Appl. Surf. Sci. 70-71, 669–674 (1993).
[CrossRef]

Mattheis, J.

J. Mattheis, U. Rau, and J. H. Werner, “Light absorption and emission in semiconductors with band gap fluctuations-A study on Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 101(11), 113519 (2007).
[CrossRef]

Meister, D.

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

Menner, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Metzger, W.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Meyer, B. K.

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Meyer, Th.

U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

Mishra, U. K.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Mudryi, A. V.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Nakada, T.

S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(5), 1059–1062 (2009).
[CrossRef]

S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009).
[CrossRef]

Nakagawa, Y.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Nanishi, Y.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Nataf, G.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Niki, S.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Nishiwaki, S.

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Noufi, R.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

Ohkubo, K.

S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009).
[CrossRef]

Omiya, H.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Paetel, S.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Perkins, C. L.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Plumlee, C.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Ponce, F. A.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Powalla, M.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Rau, U.

J. Mattheis, U. Rau, and J. H. Werner, “Light absorption and emission in semiconductors with band gap fluctuations-A study on Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 101(11), 113519 (2007).
[CrossRef]

U. Rau, “Tunneling-enhanced recombination in CuInGaSe2 heterojunction solar cells,” Appl. Phys. Lett. 74(1), 111–113 (1999).
[CrossRef]

Raw, U.

U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

Rega, N.

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Riedl, W.

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

Romannathan, K.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Romero, M.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Romero, M. J.

M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
[CrossRef]

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Saito, Y.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Scheer, R.

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

Schock, H. W.

U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

Schon, J. H.

J. H. Schon and E. Bucher, “Comparison of point defects in CuInSe2 and CuGaSe2 single crystals,” Sol. Energy Mater. Sol. Cells 57(3), 229–237 (1999).
[CrossRef]

Semond, F.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

Shatalov, M.

E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
[CrossRef]

Shirakata, S.

S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(5), 1059–1062 (2009).
[CrossRef]

S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009).
[CrossRef]

Siebentritt, S.

S. Siebentritt, “What limits the efficiency of chalcopyrite solar cells?” Sol. Energy Sol. Cells. 95(6), 1471–1476 (2011).
[CrossRef]

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Song, J. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Srinivasan, S.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Sun, W. H.

E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
[CrossRef]

Tanaka, S.

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

Teeter, G.

M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
[CrossRef]

Tennant, A. L.

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

Thomas, D. G.

D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of radiative recombination at randomly distributed donors and acceptors,” Phys. Rev. 140(1A), A202–A220 (1965).
[CrossRef]

Töpper, K.

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

Tuttle, J.

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Victorov, I. A.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Wagner, M.

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Ward, J.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Weber, M.

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

Wei, S. H.

S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998).
[CrossRef]

Weidinger, A.

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

Werner, J. H.

J. Mattheis, U. Rau, and J. H. Werner, “Light absorption and emission in semiconductors with band gap fluctuations-A study on Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 101(11), 113519 (2007).
[CrossRef]

Wischmann, W.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Wu, C. S.

T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
[CrossRef]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Wu, K. H.

Wuerz, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Yakushev, M. V.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Yamada, A.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, J. Matsufusa, and A. Yoshida, “Optical properties in RF sputtered CuInxGa1−xSe2 thin films,” Appl. Surf. Sci. 70-71, 669–674 (1993).
[CrossRef]

Yan, Y.

M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
[CrossRef]

Yang, J. W.

E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
[CrossRef]

Yokoyama, H.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Yoon, K. H.

S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
[CrossRef]

Yoshida, A.

T. Yamaguchi, J. Matsufusa, and A. Yoshida, “Optical properties in RF sputtered CuInxGa1−xSe2 thin films,” Appl. Surf. Sci. 70-71, 669–674 (1993).
[CrossRef]

Yoshino, K.

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

Young, D.

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Yun, J. H.

S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
[CrossRef]

Zajogin, A.

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

Zalesski, V. B.

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

Zhang, S. B.

S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998).
[CrossRef]

Zunger, A.

S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998).
[CrossRef]

Appl. Phys. Lett. (6)

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006).
[CrossRef]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997).
[CrossRef]

U. Rau, “Tunneling-enhanced recombination in CuInGaSe2 heterojunction solar cells,” Appl. Phys. Lett. 74(1), 111–113 (1999).
[CrossRef]

Appl. Surf. Sci. (1)

T. Yamaguchi, J. Matsufusa, and A. Yoshida, “Optical properties in RF sputtered CuInxGa1−xSe2 thin films,” Appl. Surf. Sci. 70-71, 669–674 (1993).
[CrossRef]

Curr. Appl. Phys. (1)

S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010).
[CrossRef]

J. Appl. Phys. (5)

J. Mattheis, U. Rau, and J. H. Werner, “Light absorption and emission in semiconductors with band gap fluctuations-A study on Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 101(11), 113519 (2007).
[CrossRef]

K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999).
[CrossRef]

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[CrossRef]

A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004).
[CrossRef]

I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of radiative recombination at randomly distributed donors and acceptors,” Phys. Rev. 140(1A), A202–A220 (1965).
[CrossRef]

Phys. Rev. B (2)

S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998).
[CrossRef]

M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011).
[CrossRef]

Phys. Status Solidi, A Appl. Res. (1)

M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998).
[CrossRef]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(5), 1059–1062 (2009).
[CrossRef]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Prog. Photovolt. Res. Appl. (3)

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994).
[CrossRef]

K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009).
[CrossRef]

J. H. Schon and E. Bucher, “Comparison of point defects in CuInSe2 and CuGaSe2 single crystals,” Sol. Energy Mater. Sol. Cells 57(3), 229–237 (1999).
[CrossRef]

Sol. Energy Sol. Cells. (1)

S. Siebentritt, “What limits the efficiency of chalcopyrite solar cells?” Sol. Energy Sol. Cells. 95(6), 1471–1476 (2011).
[CrossRef]

Solid-State Electron. (1)

T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011).
[CrossRef]

Thin Solid Films (3)

N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005).
[CrossRef]

A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003).
[CrossRef]

U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

Other (1)

B. M. Keyes, P. Dippo, W. Metzger, J. AbuShama, and R. Noufi, “Cu(In,Ga)Se2 thin films evolution during growth – a photoluminescence study,” Proceeding of the 29th IEEE Phot. Spec. Conf., 511–514 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) The PL spectra of the CIGS thin film under temperatures from 10 K to 300 K. Inset is the fitting result of PL spectrum at 10 K using Gaussian distribution, and (b) plots of the four PL emission peak positions at different temperatures.

Fig. 2
Fig. 2

(a) Peak position versus temperature of p3 with result of fitting to modified Varshni Eq. and (b) the Arrhenius plot of p3 and both of their corresponding fitting curves. (c) The energy level diagram of the CIGS thin film.

Fig. 3
Fig. 3

(a) The PL spectrum of the CIGS thin film under excitation powers from 1 mW to 50 mW. (b) PL intensity of p1 (blue line) and p2 (red line) with temperature. Inset shows the schematic representation of proposed DAP transition. (c) A schematic illustration for conditions under low excitation and high excitation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E peak ( T )= E g ( 0 ) α T 2 β+T σ 2 k B T ,
I( T )= I( 0 ) 1+Aexp( E a k B T )+Bexp( E b k B T ) ,
ω= E g ( E A + E D )+ e 2 4π ε 0 εR ,
1 τ = 2π | f| d E ( r e ) |i | 2 ρ f ,

Metrics